हिंदी

∫ X 2 Sin 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int x^2 \sin^2 x\ dx\]
योग

उत्तर

\[\int x^2 \sin^2 x\ dx\]
`   " Taking x"^2"  as the first function and sin"^2 x " as the second function . " ` 
\[ = x^2 \int\frac{1 - \cos2x}{2} - \int\left\{ \frac{d}{dx}\left( x^2 \right)\int\frac{1 - \cos2x}{2}dx \right\}dx\]

` = x^2/2  ( x - {sin 2x}/2 ) - ∫   x^2dx + ∫  { x sin 2x} /2 dx `

  `[   \text{  Here, taking x as the first function and sin 2x as the second function} ]. ` 
`=  x^3 / 2 - { x^2 sin 2x}/4   - x^3/3 + 1/2 [ x  ∫  sin 2x - ∫  { d /dx (x) ∫   sin  2x  dx } dx] `

\[ = \frac{x^3}{2} - \frac{x^2 \sin2x}{4} - \frac{x^3}{3} + \frac{1}{2}\left[ \frac{- x\cos2x}{2} + \int\frac{\text{ cos 2x  dx }}{4} \right]\]
\[ = \frac{x^3}{6} - \frac{x^2 \sin2x}{4} - \frac{x \cos2x}{4} + \frac{\sin2x}{8} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.25 | Q 16 | पृष्ठ १३३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

` ∫   cos  3x   cos  4x` dx  

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\sqrt{1 + e^x} .  e^x dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int x \cos x\ dx\]

\[\int x \text{ sin 2x dx }\]

\[\int x^3 \cos x^2 dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int \tan^4 x\ dx\]

\[\int \cos^5 x\ dx\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×