Advertisements
Advertisements
प्रश्न
उत्तर
\[\int x^2 \sin^2 x\ dx\]
` " Taking x"^2" as the first function and sin"^2 x " as the second function . " `
\[ = x^2 \int\frac{1 - \cos2x}{2} - \int\left\{ \frac{d}{dx}\left( x^2 \right)\int\frac{1 - \cos2x}{2}dx \right\}dx\]
` = x^2/2 ( x - {sin 2x}/2 ) - ∫ x^2dx + ∫ { x sin 2x} /2 dx `
`[ \text{ Here, taking x as the first function and sin 2x as the second function} ]. `
`= x^3 / 2 - { x^2 sin 2x}/4 - x^3/3 + 1/2 [ x ∫ sin 2x - ∫ { d /dx (x) ∫ sin 2x dx } dx] `
\[ = \frac{x^3}{2} - \frac{x^2 \sin2x}{4} - \frac{x^3}{3} + \frac{1}{2}\left[ \frac{- x\cos2x}{2} + \int\frac{\text{ cos 2x dx }}{4} \right]\]
\[ = \frac{x^3}{6} - \frac{x^2 \sin2x}{4} - \frac{x \cos2x}{4} + \frac{\sin2x}{8} + C\]
APPEARS IN
संबंधित प्रश्न
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
` = ∫ root (3){ cos^2 x} sin x dx `
\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]