हिंदी

∫ X X 3 − 1 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x}{x^3 - 1} \text{ dx}\]
योग

उत्तर

\[\text{We have}, \]
\[I = \int\frac{\text{ x dx}}{x^3 - 1}\]
\[ = \int\frac{\text{ x dx}}{\left( x - 1 \right) \left( x^2 + x + 1 \right)}\]
\[\text{ Let} \frac{x}{\left( x - 1 \right) \left( x^2 + x + 1 \right)} = \frac{A}{x - 1} + \frac{Bx + C}{x^2 + x + 1}\]
\[ \Rightarrow \frac{x}{\left( x - 1 \right) \left( x^2 + x + 1 \right)} = \frac{A \left( x^2 + x + 1 \right) + \left( Bx + C \right) \left( x - 1 \right)}{\left( x - 1 \right) \left( x^2 + x + 1 \right)}\]
\[ \Rightarrow x = A \left( x^2 + x + 1 \right) + B x^2 - Bx + Cx - C\]
\[ \Rightarrow x = \left( A + B \right) x^2 + \left( A - B + C \right) x + A - C\]
\[\text{Equating Coefficient of like terms}\]
\[A + B = 0 . . . . . \left( 1 \right)\]
\[A - B + C = 1 . . . . . \left( 2 \right)\]
\[A - C = 0 . . . . . \left( 3 \right)\]
\[\text{Solving} \left( 1 \right), \left( 2 \right) \text{ and }\left( 3 \right), \text{we get}\]
\[A = \frac{1}{3}\]
\[B = - \frac{1}{3}\]
\[C = \frac{1}{3}\]
\[ \therefore \frac{x}{\left( x - 1 \right) \left( x^2 + x + 1 \right)} = \frac{1}{3 \left( x - 1 \right)} + \frac{- \frac{1}{3}x + \frac{1}{3}}{x^2 + x + 1}\]
\[ = \frac{1}{3 \left( x - 1 \right)} + \frac{1}{3} \left[ \frac{- x + 1}{x^2 + x + 1} \right]\]
\[ = \frac{1}{3 \left( x - 1 \right)} - \frac{1}{3} \left[ \frac{x - 1}{x^2 + x + 1} \right]\]
\[ = \frac{1}{3 \left( x - 1 \right)} - \frac{1}{6} \left[ \frac{2x - 2}{x^2 + x + 1} \right]\]
\[ = \frac{1}{3 \left( x - 1 \right)} - \frac{1}{6} \left[ \frac{2x + 1}{x^2 + x + 1} \right] - \frac{1}{6} \times \frac{- 3}{x^2 + x + 1}\]
\[ = \frac{1}{3 \left( x - 1 \right)} - \frac{1}{6} \left[ \frac{2x + 1}{x^2 + x + 1} \right] + \frac{1}{2} \times \frac{1}{x^2 + x + 1}\]
\[ \therefore I = \frac{1}{3}\int\frac{dx}{x - 1} - \frac{1}{6}\int\frac{\left( 2x + 1 \right) dx}{x^2 + x + 1} + \frac{1}{2}\int\frac{dx}{x^2 + x + \frac{1}{4} - \frac{1}{4} + 1}\]
\[\text{ Putting x}^2 + x + 1 = t\]
\[ \Rightarrow \left( 2x + 1 \right) dx = dt\]
\[ \therefore I = \frac{1}{3} \text{ log }\left| x - 1 \right| - \frac{1}{6} \text{ log} \left| t \right| + \frac{1}{2}\int\frac{dx}{\left( x + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}\]
\[ = \frac{1}{3} \text{ log} \left| x - 1 \right| - \frac{1}{6} \text{ log} \left| x^2 + x + 1 \right| + \frac{1}{2}\left[ \frac{2}{\sqrt{3}} \text{ tan}^{- 1} \left( \frac{x + \frac{1}{2}}{\frac{\sqrt{3}}{2}} \right) \right] + C\]
\[ = \frac{1}{3} \text{ log } \left| x - 1 \right| - \frac{1}{6} \text{ log} \left| x^2 + x + 1 \right| + \frac{1}{\sqrt{3}} \text{ tan}^{- 1} \left( \frac{2x + 1}{\sqrt{3}} \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 123 | पृष्ठ २०५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×