Advertisements
Advertisements
प्रश्न
\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]
योग
उत्तर
\[\int\frac{dx}{x\sqrt{4 - 9 \left( \log x \right)^2}}\]
` \text{ let log x }= t `
\[ \Rightarrow \frac{1}{x} dx = dt\]
\[Now, \int\frac{dx}{x\sqrt{4 - 9 \left( \log x \right)^2}}\]
\[ = \int\frac{dt}{\sqrt{4 - 9 t^2}}\]
\[ = \int\frac{dt}{\sqrt{2^2 - \left( 3t \right)^2}}\]
\[ = \frac{1}{3} \text{ sin }^{- 1} \left( \frac{3t}{2} \right) + C\]
\[ = \frac{1}{3} \text{ sin }^{- 1} \left( \frac{3 \log x}{2} \right) + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]
\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2} \text{dx} \]
\[\int\frac{e^x + 1}{e^x + x} dx\]
\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]
\[\int\frac{1}{ x \text{log x } \text{log }\left( \text{log x }\right)} dx\]
\[\int x^3 \sin x^4 dx\]
\[\int\frac{\cos^5 x}{\sin x} dx\]
\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
` ∫ tan^3 x sec^2 x dx `
` ∫ tan^5 x dx `
\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]
\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]
\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]
\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]
\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]
\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]
\[\int\frac{\log x}{x^n}\text{ dx }\]
\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2} \text{ dx }\]
\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]
\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]
\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int\sqrt{3 - x^2} \text{ dx}\]
\[\int\sqrt{x^2 - 2x} \text{ dx}\]
\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]
\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int \sec^2 x \cos^2 2x \text{ dx }\]
\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]
\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]
\[\int \cos^5 x\ dx\]
\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]
\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]
\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]
\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int x^2 \tan^{- 1} x\ dx\]
\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]
\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]
Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .
\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]