हिंदी

∫ 1 X √ 4 − 9 ( Log X ) 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]
योग

उत्तर

\[\int\frac{dx}{x\sqrt{4 - 9 \left( \log x \right)^2}}\]
` \text{ let log x }= t `
\[ \Rightarrow \frac{1}{x} dx = dt\]
\[Now, \int\frac{dx}{x\sqrt{4 - 9 \left( \log x \right)^2}}\]
\[ = \int\frac{dt}{\sqrt{4 - 9 t^2}}\]
\[ = \int\frac{dt}{\sqrt{2^2 - \left( 3t \right)^2}}\]
\[ = \frac{1}{3} \text{ sin }^{- 1} \left( \frac{3t}{2} \right) + C\]
\[ = \frac{1}{3} \text{  sin }^{- 1} \left( \frac{3 \log x}{2} \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.18 [पृष्ठ ९९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.18 | Q 7 | पृष्ठ ९९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

` ∫  tan^3    x   sec^2  x   dx  `

` ∫      tan^5    x   dx `


\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int \cos^5 x\ dx\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×