हिंदी

∫ E X − 1 E X + 1 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]
योग

उत्तर

\[\text{ We  have, }\]
\[I = \int\frac{e^x - 1}{e^x + 1}dx\]
\[ = \int\frac{2 e^x - \left( e^x + 1 \right)}{e^x + 1}dx\]
\[ = \int\frac{2 e^x}{e^x + 1}dx - \int dx\]
\[\text{ Putting  e}^x + 1 = t\]
\[ \Rightarrow e^x dx = dt\]
\[ \therefore I = \int\frac{2}{t}dt - \int dx\]
\[ = 2 \text{ log } \left| t \right| - x + C\]
\[ = 2 \text{ log} \left| e^x + 1 \right| - x + C\]
\[ = 2 \text{ log }\left( e^x + 1 \right) - x + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 17 | पृष्ठ २०३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

` ∫   tan   x   sec^4  x   dx  `


\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

 
` ∫  x tan ^2 x dx 

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int x \cos^3 x\ dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int \log_{10} x\ dx\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×