Advertisements
Advertisements
प्रश्न
\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]
योग
उत्तर
\[\text{ We have, }\]
\[I = \int\frac{e^x - 1}{e^x + 1}dx\]
\[ = \int\frac{2 e^x - \left( e^x + 1 \right)}{e^x + 1}dx\]
\[ = \int\frac{2 e^x}{e^x + 1}dx - \int dx\]
\[\text{ Putting e}^x + 1 = t\]
\[ \Rightarrow e^x dx = dt\]
\[ \therefore I = \int\frac{2}{t}dt - \int dx\]
\[ = 2 \text{ log } \left| t \right| - x + C\]
\[ = 2 \text{ log} \left| e^x + 1 \right| - x + C\]
\[ = 2 \text{ log }\left( e^x + 1 \right) - x + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]
\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]
\[\int\left( x + 2 \right) \sqrt{3x + 5} \text{dx} \]
\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]
\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]
\[\int\frac{\cos x}{2 + 3 \sin x} dx\]
\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]
` ∫ tan x sec^4 x dx `
\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]
\[\int\frac{3 x^5}{1 + x^{12}} dx\]
\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{ dx }\]
\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]
\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]
\[\int\frac{1}{1 - \cot x} dx\]
\[\int \left( \log x \right)^2 \cdot x\ dx\]
\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]
` ∫ x tan ^2 x dx
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]
\[\int x \cos^3 x\ dx\]
\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]
\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]
Write a value of
\[\int e^{3 \text{ log x}} x^4\text{ dx}\]
` \int \text{ x} \text{ sec x}^2 \text{ dx is equal to }`
\[\int\frac{1}{1 - \cos x - \sin x} dx =\]
\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]
\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to
\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}} \text{ dx }\]
\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]
\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]
\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]
\[\int\sqrt{\text{ cosec x} - 1} \text{ dx }\]
\[\int\frac{1}{2 + \cos x} \text{ dx }\]
\[\int \log_{10} x\ dx\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]