हिंदी

∫ 1 1 − Cot X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{1 - \cot x} dx\]
योग

उत्तर

\[\text{ Let I }= \int\frac{1}{1 - \cot x}dx\]
\[ = \int\frac{1}{1 - \frac{\cos x}{\sin x}}dx\]
\[ = \int\frac{\sin x}{\sin x - \cos x}dx\]
\[ = \frac{1}{2}\int\frac{2 \sin x}{\sin x - \cos x} dx\]
\[ = \frac{1}{2}\int\left[ \frac{\sin x + \cos x + \sin x - \cos x}{\sin x - \cos x} \right]dx\]
\[ = \frac{1}{2}\int\left( \frac{\sin x + \cos x}{\sin x - \cos x} \right)dx + \frac{1}{2}\int dx\]
\[\text{ Putting sin x }- \cos x = t\]
\[ \Rightarrow \left( \cos x + \sin x \right) dx = dt\]
\[ \therefore I = \frac{1}{2}\int\frac{1}{t}dt + \frac{1}{2}\int dx\]
\[ = \frac{1}{2} \text{ ln }\left| t \right| + \frac{x}{2} + C\]
\[ = \frac{x}{2} + \frac{1}{2} \text{ ln }\left| \sin x - \cos x \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.24 [पृष्ठ १२२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.24 | Q 1 | पृष्ठ १२२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \sin^2 \frac{x}{2} dx\]

`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int \sec^4 2x \text{ dx }\]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int2 x^3 e^{x^2} dx\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int \sec^4 x\ dx\]


\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×