Advertisements
Advertisements
प्रश्न
\[\int\left( e^\text{log x} + \sin x \right) \text{ cos x dx }\]
उत्तर
\[\int\left( e^\text{log x} + \sin x \right) \text{ cos x dx }\]
\[ = \int \left( x + \sin x \right)\cos x dx \left( \because e^(log x = x \right)\]
\[ = \int \left( x \cos x + \sin x \cos x \right) dx\]
\[ = \int x \text{ cos x dx }+ \frac{1}{2}\int 2 \sin x \text{ cos x dx }\]
\[ = \int x_I \text{ cos}_{II} \text{ x dx }+ \frac{1}{2} \int\text{ sin 2x dx }\]
\[ = \left[ x\int\text{ cos x dx }- \int\left\{ \frac{d}{dx}\left( x \right)\int\text
{ cos x dx } \right\}dx \right] + \frac{1}{2} \int\text{ sin 2x dx }\]
\[ = x \sin x - \int1 . \text{ sin x dx} + \frac{1}{2}\left[ \frac{- \cos 2x}{2} \right] + C\]
\[ = x \sin x - \left( - \cos x \right) - \frac{1}{4}\cos 2x + C\]
\[ = x \sin x + \cos x - \frac{1}{4}\left( 1 - 2 \sin^2 x \right) + C\]
\[ = x \sin x + \cos x + \frac{\sin^2 x}{2} - \frac{1}{4} + C\]
\[ = x \sin x + \cos x + \frac{\sin^2 x}{2} + C' \text{ where C' = C }- \frac{1}{4}\]
APPEARS IN
संबंधित प्रश्न
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`