हिंदी

∫ ( E ( Log X ) + Sin X ) Cos X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]

योग

उत्तर

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]
\[ = \int \left( x + \sin x \right)\cos x dx \left( \because e^(log x = x \right)\]
\[ = \int \left( x \cos x + \sin x \cos x \right) dx\]
\[ = \int x \text{ cos x dx }+ \frac{1}{2}\int 2 \sin x \text{ cos x dx }\]
\[ = \int x_I \text{ cos}_{II} \text{    x  dx }+ \frac{1}{2} \int\text{ sin 2x dx }\]
\[ = \left[ x\int\text{ cos x dx }- \int\left\{ \frac{d}{dx}\left( x \right)\int\text
{ cos  x  dx } \right\}dx \right] + \frac{1}{2} \int\text{ sin  2x  dx }\]
\[ = x \sin x - \int1 . \text{ sin  x  dx} + \frac{1}{2}\left[ \frac{- \cos 2x}{2} \right] + C\]
\[ = x \sin x - \left( - \cos x \right) - \frac{1}{4}\cos 2x + C\]
\[ = x \sin x + \cos x - \frac{1}{4}\left( 1 - 2 \sin^2 x \right) + C\]
\[ = x \sin x + \cos x + \frac{\sin^2 x}{2} - \frac{1}{4} + C\]
\[ = x \sin x + \cos x + \frac{\sin^2 x}{2} + C'   \text{  where C' = C }- \frac{1}{4}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.25 | Q 46 | पृष्ठ १३४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

\[\int \cot^6 x \text{ dx }\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int2 x^3 e^{x^2} dx\]

\[\int \log_{10} x\ dx\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int x \sin x \cos 2x\ dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int x^2 \tan^{- 1} x\ dx\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×