Advertisements
Advertisements
प्रश्न
\[\int x^2 \tan^{- 1} x\text{ dx }\]
योग
उत्तर
\[\text{ Let I } = \int {x^2}_{II} . \tan^{- 1}_1 \text{ x dx }\]
\[ = \tan^{- 1} x\int x^2 dx - \int\left\{ \frac{d}{dx}\left( \tan^{- 1} x \right)\int x^2 dx \right\}\text{ dx }\]
\[ = \tan^{- 1} x \times \frac{x^3}{3} - \int \left( \frac{1}{1 + x^2} \right) \times \frac{x^3}{3} \text{ dx }\]
\[ = \tan^{- 1} x\int x^2 dx - \int\left\{ \frac{d}{dx}\left( \tan^{- 1} x \right)\int x^2 dx \right\}\text{ dx }\]
\[ = \tan^{- 1} x \times \frac{x^3}{3} - \int \left( \frac{1}{1 + x^2} \right) \times \frac{x^3}{3} \text{ dx }\]
\[ = \tan^{- 1} x. \frac {x^3}{3} - \frac{1}{3}\int \frac{x^2 . x}{1 + x^2}dx\]
\[\text{ Let 1 }+ x^2 = t\]
\[ \Rightarrow \text{ 2x dx }= dt\]
\[ \Rightarrow \text{ x dx }= \frac{dt}{2}\]
\[ \therefore I = \tan^{- 1} x . \frac{x^3}{3} - \frac{1}{6}\int \frac{\left( t - 1 \right)}{t} . dt\]
\[ = \tan^{- 1} x . \frac{x^3}{3} - \frac{1}{6}\int dt + \frac{1}{6}\int \frac{dt}{t}\]
\[ = \tan^{- 1} x . \frac{x^3}{3} - \frac{t}{6} + \frac{1}{6}\text{ log }\left| t \right| + C\]
\[ = \tan^{- 1} x . \frac{x^3}{3} - \frac{\left( 1 + x^2 \right)}{6} + \frac{1}{6}\text{ log }\left( 1 + x^2 \right) + C\]
\[ = \tan^{- 1} x . \frac{x^3}{3} - \frac{x^2}{6} + \frac{1}{6}\text{ log }\left( 1 + x^2 \right) - \frac{1}{6} + C\]
\[ = \tan^{- 1} x . \frac{x^3}{3} - \frac{x^2}{6} + \frac{1}{6}\text{ log }\left| 1 + x^2 \right| +\text{ C' where C' = C -} \frac{1}{6}\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int \left( e^x + 1 \right)^2 e^x dx\]
\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]
\[\int \cos^2 \text{nx dx}\]
\[\int\frac{e^x + 1}{e^x + x} dx\]
\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]
\[\int\frac{x^2}{\sqrt{x - 1}} dx\]
` ∫ tan x sec^4 x dx `
\[\int\frac{1}{1 + x - x^2} \text{ dx }\]
\[\int\frac{3 x^5}{1 + x^{12}} dx\]
\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]
\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]
\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]
\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]
\[\int \left( \log x \right)^2 \cdot x\ dx\]
\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]
\[\int x^2 \sin^{- 1} x\ dx\]
\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]
\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]
\[\int e^x \left( \cot x + \log \sin x \right) dx\]
\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]
\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]
\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]
\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to
\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]
\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]
\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]
\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]
\[\int\sqrt{\text{ cosec x} - 1} \text{ dx }\]
\[\int \tan^5 x\ \sec^3 x\ dx\]
\[\int\sqrt{a^2 + x^2} \text{ dx }\]
\[\int \left( \sin^{- 1} x \right)^3 dx\]
\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]
\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]