Advertisements
Advertisements
प्रश्न
\[\int x^2 \tan^{- 1} x\text{ dx }\]
बेरीज
उत्तर
\[\text{ Let I } = \int {x^2}_{II} . \tan^{- 1}_1 \text{ x dx }\]
\[ = \tan^{- 1} x\int x^2 dx - \int\left\{ \frac{d}{dx}\left( \tan^{- 1} x \right)\int x^2 dx \right\}\text{ dx }\]
\[ = \tan^{- 1} x \times \frac{x^3}{3} - \int \left( \frac{1}{1 + x^2} \right) \times \frac{x^3}{3} \text{ dx }\]
\[ = \tan^{- 1} x\int x^2 dx - \int\left\{ \frac{d}{dx}\left( \tan^{- 1} x \right)\int x^2 dx \right\}\text{ dx }\]
\[ = \tan^{- 1} x \times \frac{x^3}{3} - \int \left( \frac{1}{1 + x^2} \right) \times \frac{x^3}{3} \text{ dx }\]
\[ = \tan^{- 1} x. \frac {x^3}{3} - \frac{1}{3}\int \frac{x^2 . x}{1 + x^2}dx\]
\[\text{ Let 1 }+ x^2 = t\]
\[ \Rightarrow \text{ 2x dx }= dt\]
\[ \Rightarrow \text{ x dx }= \frac{dt}{2}\]
\[ \therefore I = \tan^{- 1} x . \frac{x^3}{3} - \frac{1}{6}\int \frac{\left( t - 1 \right)}{t} . dt\]
\[ = \tan^{- 1} x . \frac{x^3}{3} - \frac{1}{6}\int dt + \frac{1}{6}\int \frac{dt}{t}\]
\[ = \tan^{- 1} x . \frac{x^3}{3} - \frac{t}{6} + \frac{1}{6}\text{ log }\left| t \right| + C\]
\[ = \tan^{- 1} x . \frac{x^3}{3} - \frac{\left( 1 + x^2 \right)}{6} + \frac{1}{6}\text{ log }\left( 1 + x^2 \right) + C\]
\[ = \tan^{- 1} x . \frac{x^3}{3} - \frac{x^2}{6} + \frac{1}{6}\text{ log }\left( 1 + x^2 \right) - \frac{1}{6} + C\]
\[ = \tan^{- 1} x . \frac{x^3}{3} - \frac{x^2}{6} + \frac{1}{6}\text{ log }\left| 1 + x^2 \right| +\text{ C' where C' = C -} \frac{1}{6}\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]
\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]
\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]
\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]
\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]
\[\int \sin^5\text{ x }\text{cos x dx}\]
\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
\[\ \int\ x \left( 1 - x \right)^{23} dx\]
\[\int \sin^3 x \cos^6 x \text{ dx }\]
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]
\[\int\frac{1}{1 + x - x^2} \text{ dx }\]
` ∫ { x^2 dx}/{x^6 - a^6} dx `
\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]
\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]
\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]
\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]
\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]
\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]
\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]
\[\int\frac{1}{5 + 4 \cos x} dx\]
\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]
\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]
\[\int e^x \left( \cos x - \sin x \right) dx\]
\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]
\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]
\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]
\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int\frac{x^3}{x + 1}dx\] is equal to
\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\]
\[\int \sin^4 2x\ dx\]
\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
\[\int {cosec}^4 2x\ dx\]
\[\int x\sqrt{1 + x - x^2}\text{ dx }\]
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]
\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]