मराठी

∫ 1 3 + 2 Cos 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I } = \int \frac{1}{3 + 2 \cos^2 x}dx\]
\[\text{Dividing numerator and denominator by} \cos^2 x\]
\[ \Rightarrow I = \int \frac{\sec^2 x}{3 \sec^2 x + 2} dx\]
\[ = \int \frac{\sec^2 x}{3 \left( 1 + \tan^2 x \right) + 2}dx\]
\[ = \int \frac{\sec^2 x}{3 \tan^2 x + 5}dx\]
\[ = \int \frac{\sec^2 x}{\left( \sqrt{5} \right)^2 + \left( \sqrt{3} \tan x \right)^2}dx\]
\[\text{ Let }\sqrt{3} \tan x = t\]
\[ \Rightarrow \sqrt{3} \text{ sec}^2 x \text{ dx } = dt\]
\[ \Rightarrow \sec^2 x \text{ dx } = \frac{dt}{\sqrt{3}}\]
\[ \therefore I = \frac{1}{\sqrt{3}}\int \frac{dt}{\left( \sqrt{5} \right)^2 + t^2}\]
\[ = \frac{1}{\sqrt{3}} \times \frac{1}{\sqrt{5}} \text{ tan }^{- 1} \left( \frac{t}{\sqrt{5}} \right) + C\]
\[ = \frac{1}{\sqrt{15}} \text{ tan }^{- 1} \left( \frac{\sqrt{3} \tan x}{\sqrt{5}} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.22 [पृष्ठ ११४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.22 | Q 6 | पृष्ठ ११४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

`int 1/(cos x - sin x)dx`

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int x \cos x\ dx\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int x \sin^3 x\ dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int \tan^4 x\ dx\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×