Advertisements
Advertisements
प्रश्न
\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]
बेरीज
उत्तर
\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]
\[\text{Let 2 + 3 }\log x = t\]
\[ \Rightarrow \frac{3}{x} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{dx}{x} = \frac{dt}{3}\]
Now, \[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]
\[ = \frac{1}{3}\int \text{sin t dt}\]
\[ = \frac{1}{3} \left[ - \text{cos t }\right] + C\]
\[ = - \frac{1}{3}\text{cos }\left( \text{2 + 3 log x }\right) + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1}{1 - \sin x} dx\]
\[\int\frac{\tan x}{\sec x + \tan x} dx\]
\[\int\frac{\cos x}{1 + \cos x} dx\]
\[\int x^3 \sin x^4 dx\]
\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]
\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]
` ∫ tan x sec^4 x dx `
` ∫ tan^5 x dx `
\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]
\[\int\frac{1}{\sin x \cos^3 x} dx\]
\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]
\[\int\frac{x}{x^4 - x^2 + 1} dx\]
\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]
\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]
\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]
\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]
\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]
\[\int\frac{1}{1 - \tan x} \text{ dx }\]
\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]
\[\int x^2 e^{- x} \text{ dx }\]
\[\int \log_{10} x\ dx\]
\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]
\[\int x \sin^3 x\ dx\]
\[\int\sqrt{2x - x^2} \text{ dx}\]
\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]
\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]
\[\int\frac{1}{x^4 - 1} dx\]
\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int \cot^4 x\ dx\]
\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]
\[\int\frac{x + 1}{x^2 + 4x + 5} \text{ dx}\]
\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]
\[\int \tan^5 x\ \sec^3 x\ dx\]
\[\int\frac{1}{\sec x + cosec x}\text{ dx }\]
\[\int\sqrt{1 + 2x - 3 x^2}\text{ dx } \]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]