मराठी

∫ Sin ( 2 + 3 Log X ) X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]
बेरीज

उत्तर

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]
\[\text{Let 2 + 3 }\log x = t\]
\[ \Rightarrow \frac{3}{x} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{dx}{x} = \frac{dt}{3}\]
Now, \[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]
\[ = \frac{1}{3}\int \text{sin t dt}\]
\[ = \frac{1}{3} \left[ - \text{cos t }\right] + C\]
\[ = - \frac{1}{3}\text{cos }\left( \text{2 + 3 log x }\right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.09 [पृष्ठ ५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.09 | Q 58 | पृष्ठ ५९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1}{1 - \sin x} dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

` ∫   tan   x   sec^4  x   dx  `


` ∫      tan^5    x   dx `


\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int x \sin^3 x\ dx\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int \cot^4 x\ dx\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×