मराठी

∫ X √ X 2 + X + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]
बेरीज

उत्तर

 

`   \text{ Let I } = ∫   { x   dx}/{\sqrt{x^2 + x + 1}}`
\[\text{ Consider, } \]
\[x = A \frac{d}{dx} \left( x^2 + x + 1 \right) + B\]
\[ \Rightarrow x = A \left( 2x + 1 \right) + B\]
\[ \Rightarrow x = \left( 2A \right) x + A + B\]
\[\text{Equating Coefficient of like terms}\]
\[2A = 1\]
\[ \Rightarrow A = \frac{1}{2}\]
\[\text{ And }\]
\[A + B = 0\]
\[ \Rightarrow \frac{1}{2} + B = 0\]
\[ \Rightarrow B = - \frac{1}{2}\]
\[ \therefore I = \int\frac{\left( \frac{1}{2} \left( 2x + 1 \right) - \frac{1}{2} \right)}{\sqrt{x^2 + x + 1}} dx\]
\[ = \frac{1}{2}\int\left( \frac{2x + 1}{\sqrt{x^2 + x + 1}} \right)dx - \frac{1}{2}\int\frac{dx}{\sqrt{x^2 + x + \frac{1}{4} - \frac{1}{4} + 1}}\]
\[\text{ Putting x }^2 + x + 1 = t\]
\[ \Rightarrow \left( 2x + 1 \right) dx = dt\]
\[\text{ Then, } \]
\[I = \frac{1}{2}\int\frac{dt}{\sqrt{t}} - \frac{1}{2}\int\frac{dx}{\sqrt{\left( x + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}}\]
\[ = \frac{1}{2}\int t^{- \frac{1}{2}} dt - \frac{1}{2} \text{ log  }\left| x + \frac{1}{2} + \sqrt{\left( x + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} \right| + C\]
\[ = \frac{1}{2}\left| \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right| - \frac{1}{2} \text{ log }\left| x + \frac{1}{2} + \sqrt{x^2 + x + 1} \right| + C\]
\[ = \sqrt{t} - \frac{1}{2} \text{ log  }\left| x + \frac{1}{2} + \sqrt{x^2 + x + 1} \right| + C\]
\[ = \sqrt{x^2 + x + 1} - \frac{1}{2} \text{ log }\left| x + \frac{1}{2} + \sqrt{x^2 + x + 1} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.21 [पृष्ठ ११०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.21 | Q 10 | पृष्ठ ११०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

` ∫    cos  mx  cos  nx  dx `

 


\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int \cot^5 x  \text{ dx }\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int x \sin x \cos x\ dx\]

 


\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×