Advertisements
Advertisements
प्रश्न
\[\int \sin^3 x \cos^4 x\ \text{ dx }\]
बेरीज
उत्तर
\[\text{ Let I }= \int \sin^3 x \cdot \cos^4 x\ dx\]
\[ = \int \sin^2 x \cdot \sin x \cdot \cos^4 x\ dx\]
\[ = \int\left( 1 - \cos^2 x \right) \cdot \cos^4 x \cdot \sin x\ dx \]
\[ = \int\left( \cos^4 x - \cos^6 x \right) \cdot \sin x\ dx\]
\[\text{ Putting cos x = t}\]
\[ \Rightarrow - \sin x\ dx = dt\]
\[ \Rightarrow \sin x\ dx = - dt\]
\[ \therefore I = - \int\left( t^4 - t^6 \right)dt\]
\[ = \int\left( t^6 - t^4 \right)dt\]
\[ = \frac{t^7}{7} - \frac{t^5}{5} + C\]
\[ = \frac{\cos^7 x}{7} - \frac{\cos^5 x}{5} + C......... \left[ \because t = \cos x \right]\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]
\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]
\[\int \sin^2\text{ b x dx}\]
` ∫ sin 4x cos 7x dx `
\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]
\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]
\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]
\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]
` ∫ tan x sec^4 x dx `
\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]
\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]
\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]
` ∫ \sqrt{"cosec x"- 1} dx `
\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]
\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]
\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]
\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]
\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]
\[\int\frac{1}{p + q \tan x} \text{ dx }\]
\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]
\[\int\frac{1}{3 + 4 \cot x} dx\]
\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]
\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx }\]
\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]
\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]
\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]
\[\int\frac{1}{1 + x + x^2 + x^3} dx\]
\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]
\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]
\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to
\[\int \sin^4 2x\ dx\]
\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]
\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]
\[\int\frac{1}{\sec x + cosec x}\text{ dx }\]
\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`