मराठी

∫ Cos X ( 1 − Sin X ) 3 ( 2 + Sin X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]
बेरीज

उत्तर

We have,
\[ I = \int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]
\[\text{Let, }\sin x = t\]
\[ \Rightarrow \cos x dx = dt\]
\[\text{Now, integration becomes}, \]
\[I = \int\frac{dt}{\left( 1 - t \right)^3 \left( 2 + t \right)} \]
\[ = - \int\frac{dt}{\left( t - 1 \right)^3 \left( t + 2 \right)} \]
\[\text{Let, }\frac{1}{\left( t - 1 \right)^3 \left( t + 2 \right)} = \frac{A}{\left( t - 1 \right)} + \frac{B}{\left( t - 1 \right)^2} + \frac{C}{\left( t - 1 \right)^3} + \frac{D}{\left( t + 2 \right)} ................(1)\]
\[ \Rightarrow 1 = A \left( t - 1 \right)^2 \left( t + 2 \right) + B\left( t - 1 \right)\left( t + 2 \right) + C\left( t + 2 \right) + D \left( t - 1 \right)^3 ....................(2)\]

\[\text{Putting t = 1 in (2), we get}\]
\[1 = 3C\]
\[ \Rightarrow C = \frac{1}{3}\]
\[\text{Putting t = - 2 in (2), we get}\]
\[1 = D \left( - 2 - 1 \right)^3 \]
\[ \Rightarrow 1 = - 27D\]
\[ \Rightarrow D = \frac{- 1}{27}\]
\[\text{Putting t = 0 in (2), we get}\]
\[1 = 2A - 2B + 2C - D\]
\[ \Rightarrow 1 = 2A - 2B + \frac{2}{3} + \frac{1}{27}\]
\[ \Rightarrow 2A - 2B = \frac{8}{27}\]
\[ \Rightarrow A - B = \frac{4}{27}\]
\[\text{Putting t = 2 in (2), we get}\]
\[1 = 4A + 4B + 4C + D\]
\[ \Rightarrow 1 = 4A + 4B + \frac{4}{3} - \frac{1}{27}\]
\[ \Rightarrow A + B = - \frac{2}{27}\]
\[Now, A - B = \frac{4}{27}\text{ and }A + B = - \frac{2}{27} \Rightarrow A = \frac{1}{27}\text{ and }B = \frac{- 1}{9}\]

\[\text{Substituting the values of A, B, C and D in (1), we get}\]
\[\frac{1}{\left( t - 1 \right)^3 \left( t + 2 \right)} = \frac{1}{27\left( t - 1 \right)} - \frac{1}{9 \left( t - 1 \right)^2} + \frac{1}{3 \left( t - 1 \right)^3} + \frac{- 1}{27\left( t + 2 \right)}\]
\[\text{Now, integration becomes}\]
\[ I = - \int\left[ \frac{1}{27\left( t - 1 \right)} - \frac{1}{9 \left( t - 1 \right)^2} + \frac{1}{3 \left( t - 1 \right)^3} + \frac{- 1}{27\left( t + 2 \right)} \right]dt\]
\[ = - \left[ \frac{1}{27}\log \left| t - 1 \right| + \frac{1}{9\left( t - 1 \right)} - \frac{1}{6 \left( t - 1 \right)^2} - \frac{1}{27}\log \left| t + 2 \right| \right] + C\]
\[ = - \frac{1}{27}\log \left| \sin x - 1 \right| - \frac{1}{9\left( \sin x - 1 \right)} + \frac{1}{6 \left( \sin x - 1 \right)^2} + \frac{1}{27}\log \left| \sin x + 2 \right| + C\]
\[ = - \frac{1}{27}\log \left| 1 - \sin x \right| + \frac{1}{9\left( 1 - \sin x \right)} + \frac{1}{6 \left( 1 - \sin x \right)^2} + \frac{1}{27}\log \left| 2 + \sin x \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 49 | पृष्ठ १७७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int \sin^2 \frac{x}{2} dx\]

` ∫    cos  mx  cos  nx  dx `

 


\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int \sin^4 2x\ dx\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×