Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
उत्तर
\[\text{Let }I = \int\frac{2 x^2 + 1}{x^2 \left( x^2 + 4 \right)}dx\]
We express
\[\frac{2 x^2 + 1}{x^2 \left( x^2 + 4 \right)} = \frac{A}{x^2} + \frac{B}{x^2 + 4}\]
\[ \Rightarrow 2 x^2 + 1 = A\left( x^2 + 4 \right) + B\left( x^2 \right)\]
Equating the coefficients of `x^2` and constants, we get
\[2 = A + B\text{ and }1 = 4A\]
\[\text{or }A = \frac{1}{4}\text{ and }B = \frac{7}{4}\]
\[ \therefore I = \int\left( \frac{\frac{1}{4}}{x^2} + \frac{\frac{7}{4}}{x^2 + 4} \right)dx\]
\[ = \frac{1}{4}\int\frac{1}{x^2}dx + \frac{7}{4}\int\frac{1}{x^2 + 4} dx\]
\[ = - \frac{1}{4x} + \frac{7}{8} \tan^{- 1} \frac{x}{2} + c\]
\[\text{Hence, }\int\frac{2 x^2 + 1}{x^2 \left( x^2 + 4 \right)}dx = - \frac{1}{4x} + \frac{7}{8} \tan^{- 1} \frac{x}{2} + c\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{ dx }\]
Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{ dx }\]
Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate: \[\int\frac{2}{1 - \cos2x}\text{ dx }\]
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int ("d"x)/sqrt(16 - 9x^2)`
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`