मराठी

∫ Cos X ( 1 − Sin X ) ( 2 − Sin X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\cos x}{\left( 1 - \sin x \right) \left( 2 - \sin x \right)} dx\]
बेरीज

उत्तर

We have,
\[I = \int \frac{\cos x dx}{\left( 1 - \sin x \right) \left( 2 - \sin x \right)}\]
\[\text{Putting }\sin x = t\]
\[ \Rightarrow \cos\ x\ dx = dt\]
\[ \therefore I = \int\frac{dt}{\left( 1 - t \right) \left( 2 - t \right)}\]
\[ = \int\frac{dt}{\left( t - 1 \right) \left( t - 2 \right)}\]
\[\text{Let }\frac{1}{\left( t - 1 \right) \left( t - 2 \right)} = \frac{A}{t - 1} + \frac{B}{t - 2}\]
\[ \Rightarrow \frac{1}{\left( t - 1 \right) \left( t - 2 \right)} = \frac{A\left( t - 2 \right) + B\left( t - 1 \right)}{\left( t - 1 \right) \left( t - 2 \right)}\]
\[ \Rightarrow 1 = A\left( t - 2 \right) + B\left( t - 1 \right)\]
\[\text{Putting }t - 1 = 0\]
\[ \Rightarrow t = 1\]
\[ \therefore 1 = A\left( 1 - 2 \right) + B \times 0\]
\[ \Rightarrow A = - 1\]
\[\text{Putting }t - 2 = 0\]
\[ \Rightarrow t = 2\]
\[ \therefore 1 = A \times 0 + B\left( 2 - 1 \right)\]
\[ \Rightarrow B = 1\]
\[ \therefore I = \int\frac{- dt}{t - 1} + \int\frac{dt}{t - 2}\]
\[ = - \log \left| t - 1 \right| + \log \left| t - 2 \right| + C\]
\[ = \log\left| \frac{t - 2}{t - 1} \right| + C\]
\[ = \log \left| \frac{\sin x - 2}{\sin x - 1} \right| + C\]
\[ = \log \left| \frac{2 - \sin x}{1 - \sin x} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 51 | पृष्ठ १७७

संबंधित प्रश्‍न

\[\int\frac{x - 1}{\sqrt{x + 4}} dx\]

\[\int\frac{1 + \tan x}{1 - \tan x} dx\]

\[\int\frac{\cos 2x + x + 1}{x^2 + \sin 2x + 2x} dx\]

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]

\[\int\frac{{cosec}^2 x}{1 + \cot x} dx\]

\[\int\frac{e^{x - 1} + x^{e - 1}}{e^x + x^e} dx\]

\[\int\frac{1}{\sin x \cos^2 x} dx\]

\[\int\frac{1}{\cos 3x - \cos x} dx\]

\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]


\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]


Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

\[\int\frac{1}{5 - 4 \cos x} \text{ dx }\]

\[\int\left( x - 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }\]

Evaluate the following integrals:

\[\int\left( x + 3 \right)\sqrt{3 - 4x - x^2} \text{  dx }\]

\[\int(3x + 1) \sqrt{4 - 3x - 2 x^2} \text{  dx }\]

Evaluate the following integral :-

\[\int\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)}dx\]

\[\int\frac{2x + 1}{\left( x + 2 \right) \left( x - 3 \right)^2} dx\]

Evaluate the following integral:

\[\int\frac{1}{x\left( x^3 + 8 \right)}dx\]

 


Evaluate the following integral:

\[\int\frac{x^2}{x^4 - x^2 - 12}dx\]

 


Evaluate the following integral:

\[\int\frac{x^2}{x^4 + x^2 - 2}dx\]

Evaluate the following integral:

\[\int\frac{1}{\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x}dx\]

Write a value of

\[\int\frac{\left( \log x \right)^n}{x} \text{ dx }\]

Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]


Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]


Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]


Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{  dx }\]


Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{  dx }\]


Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]


Evaluate: `int_  (x + sin x)/(1 + cos x )  dx`


Evaluate the following:

`int x/(x^4 - 1) "d"x`


Evaluate the following:

`int sqrt(2"a"x - x^2)  "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×