Advertisements
Advertisements
प्रश्न
Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]
उत्तर
\[\int\frac{x + \cos6x}{3 x^2 + \sin6x}dx\]
\[ \text{ Let }\left( 3 x^2 + \sin6x \right) = t\]
\[ \text{On differentiating both sides, we get}\]
\[ \left( 6x + 6\cos6x \right) dx = dt\]
\[ \therefore \int\frac{x + \cos6x}{3 x^2 + \sin6x}dx = \frac{1}{6}\int\frac{1}{t}dt\]
\[ = \frac{1}{6}\text{ log}\left| t \right| + c\]
\[ = \frac{1}{6}\text{ log}\left| 3 x^2 + \sin6x \right| + c\]
\[\text{ Hence,} \int\frac{x + \cos6x}{3 x^2 + \sin6x}dx = \frac{1}{6}\text{ log}\left| 3 x^2 + \sin6x \right| + c\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Evaluate:
Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int x/(x^4 - 1) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)