मराठी

Evaluate: ∫ X + Cos 6 X 3 X 2 + Sin 6 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]

बेरीज

उत्तर

\[\int\frac{x + \cos6x}{3 x^2 + \sin6x}dx\]
\[ \text{ Let }\left( 3 x^2 + \sin6x \right) = t\]
\[ \text{On differentiating both sides, we get}\]
\[ \left( 6x + 6\cos6x \right) dx = dt\]
\[ \therefore \int\frac{x + \cos6x}{3 x^2 + \sin6x}dx = \frac{1}{6}\int\frac{1}{t}dt\]
\[ = \frac{1}{6}\text{ log}\left| t \right| + c\]
\[ = \frac{1}{6}\text{ log}\left| 3 x^2 + \sin6x \right| + c\]
\[\text{ Hence,} \int\frac{x + \cos6x}{3 x^2 + \sin6x}dx = \frac{1}{6}\text{ log}\left| 3 x^2 + \sin6x \right| + c\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Very Short Answers [पृष्ठ १९८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Very Short Answers | Q 55 | पृष्ठ १९८

संबंधित प्रश्‍न

\[\int\frac{x}{\sqrt{x + 4}} dx\]

\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

\[\int\frac{\cos 2x}{\left( \cos x + \sin x \right)^2} dx\]

\[\int\frac{1 + \tan x}{1 - \tan x} dx\]

\[\int\frac{1}{e^x + 1} dx\]

\[\int\frac{e^{2x}}{e^{2x} - 2} dx\]

\[\int\frac{2 \cos x - 3 \sin x}{6 \cos x + 4 \sin x} dx\]

\[\int\frac{\cos 2x + x + 1}{x^2 + \sin 2x + 2x} dx\]

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]

` ∫  {1+tan}/{ x + log  sec  x   dx} `

\[\int\frac{x^3}{\left( x^2 + 1 \right)^3} dx\]

Evaluate the following integrals:

\[\int\frac{\sqrt{1 + x^2}}{x^4}dx\]

\[\int\frac{1}{\sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\]

 


Evaluate the following integrals:

\[\int\frac{\log x}{\left( x + 1 \right)^2}dx\]

 


\[\int e^{2x} \text{ sin x cos x dx }\]

Evaluate the following integrals:

\[\int e^{2x} \text{ sin }\left( 3x + 1 \right) \text{ dx }\]

Evaluate the following integrals:

\[\int\left( x + 3 \right)\sqrt{3 - 4x - x^2} \text{  dx }\]

\[\int\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} dx,\text{ where a, b, c are distinct}\]

\[\int\frac{2x + 1}{\left( x + 2 \right) \left( x - 3 \right)^2} dx\]

\[\int\frac{x^2 + 1}{x^4 - x^2 + 1} \text{ dx }\]

Evaluate the following integral:

\[\int\frac{1}{\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x}dx\]

Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]

 


Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]


Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]


Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]


Evaluate:

\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]


Evaluate: 

\[\int\frac{1}{\sin^2 x \cos^2 x}dx\]

Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]


Evaluate: `int_  (x + sin x)/(1 + cos x )  dx`


Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Evaluate the following:

`int x/(x^4 - 1) "d"x`


Evaluate the following:

`int ("d"x)/(xsqrt(x^4 - 1))`  (Hint: Put x2 = sec θ)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×