Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int x/(x^4 - 1) "d"x`
उत्तर
Let I = `int x/(x^4 - 1) "d"x`
Put x2 = t
⇒ 2x dx = dt
⇒ x dx = `"dt"/2`
`1/2 int "dt"/("t"^2 - 1) = 1/2 int "dt"/("t"^2 - (1)^2)`
= `1/2 * 1/(2 * 1) log |("t" - 1)/("t" + 1)| + "C"` ....`[because int 1/(x^2 - "a"^2) "d"x = 1/(2"a") log |(x - "a")/(x + "a")| + "C"]`
= `1/4 log |(x^2 - 1)/(x^2 + 1)| + "C"`
Hence, I = `1/4 log |(x^2 - 1)/(x^2 + 1)| + "C"`
APPEARS IN
संबंधित प्रश्न
Evaluate the following integrals:
` ∫ cot^3 x "cosec"^2 x dx `
\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Evaluate:
Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`