मराठी

Evaluate: ∫ 1 Sin 2 X Cos 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: 

\[\int\frac{1}{\sin^2 x \cos^2 x}dx\]
बेरीज

उत्तर

\[\int\frac{1}{\sin^2 x \cos^2 x}dx = 4\int\frac{1}{4 \sin^2 x \cos^2 x}dx\]
\[ = 4\int\frac{1}{\sin^2 \left( 2x \right)}dx\]
\[ = 4\int {cosec}^2 \left( 2x \right) dx\]
\[ = - \frac{4}{2}\cot\left( 2x \right) + c\]
\[ = - 2\cot\left( 2x \right) + c\]
\[\text{ Hence,} \int\frac{1}{\sin^2 x \cos^2 x}dx = - \text{ 2 cot}\left( \text{ 2x }\right) + c\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Very Short Answers [पृष्ठ १९८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Very Short Answers | Q 61 | पृष्ठ १९८

संबंधित प्रश्‍न

\[\int\frac{x - 1}{\sqrt{x + 4}} dx\]

\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

\[\int\frac{\cos 2x}{\left( \cos x + \sin x \right)^2} dx\]

\[\int\frac{1}{x \log x} dx\]

\[\int\frac{1}{e^x + 1} dx\]

` ∫ {cot x}/ { log sin x} dx `

\[\int\frac{sec x}{\log \left( \text{sec x }+ \text{tan x} \right)} dx\]

\[\int\frac{e^{x - 1} + x^{e - 1}}{e^x + x^e} dx\]

\[\int\frac{1}{\cos 3x - \cos x} dx\]

\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]


Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

\[\int e^{2x} \text{ sin x cos x dx }\]

Evaluate the following integrals:

\[\int\left( x + 3 \right)\sqrt{3 - 4x - x^2} \text{  dx }\]

Evaluate the following integral :-

\[\int\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)}dx\]

\[\int\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} dx,\text{ where a, b, c are distinct}\]

Evaluate the following integral:

\[\int\frac{x^3 + x + 1}{x^2 - 1}dx\]

Evaluate the following integral:

\[\int\frac{1}{x\left( x^3 + 8 \right)}dx\]

 


Evaluate the following integral:

\[\int\frac{2 x^2 + 1}{x^2 \left( x^2 + 4 \right)}dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right) \left( 2 - \sin x \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{x^4 - x^2 - 12}dx\]

 


Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .


Evaluate:

\[\int\frac{x^2 + 4x}{x^3 + 6 x^2 + 5} \text{ dx }\]

Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]

 


Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]


Evaluate:  \[\int 2^x  \text{ dx }\]


Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]


Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]


Evaluate: `int_  (x + sin x)/(1 + cos x )  dx`


Evaluate the following:

`int ("d"x)/sqrt(16 - 9x^2)`


Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Evaluate the following:

`int sqrt(2"a"x - x^2)  "d"x`


Evaluate the following:

`int ("d"x)/(xsqrt(x^4 - 1))`  (Hint: Put x2 = sec θ)


Evaluate the following:

`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×