Advertisements
Advertisements
प्रश्न
Evaluate:
उत्तर
\[\text{ Let I }= \int\left( \frac{x^2 + 4x}{x^3 + 6 x^2 + 5} \right) dx\]
\[\text{ Let x}^3 + 6 x^2 + 5 = t\]
\[ \Rightarrow \left( 3 x^2 + 12x \right) dx = dt\]
\[ \Rightarrow \left( x^2 + 4x \right) dx = \frac{dt}{3}\]
\[\text{ Putting x}^3 + 6 x^2 + 5 = t \text{ and }\left( x^2 + 4x \right) dx = \frac{dt}{3}\]
\[ \therefore I = \frac{1}{3}\int\frac{dt}{t}\]
\[ = \frac{1}{3} \text{ ln } \left| t \right| + C\]
\[ = \frac{1}{3}\text{ ln }\left| x^3 + 6 x^2 + 5 \right| + C\]
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]
Evaluate: \[\int\frac{2}{1 - \cos2x}\text{ dx }\]
Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]
Evaluate the following:
`int ("d"x)/sqrt(16 - 9x^2)`
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int x/(x^4 - 1) "d"x`