मराठी

Evaluate the Following Integral: ∫ X 2 X 4 + X 2 − 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integral:

\[\int\frac{x^2}{x^4 + x^2 - 2}dx\]
बेरीज

उत्तर

\[\text{Let }I = \int\frac{x^2}{x^4 + x^2 - 2}dx\]

We express

\[\frac{x^2}{x^4 + x^2 - 2} = \frac{x^2}{x^4 + 2 x^2 - x^2 - 2}\]

\[ = \frac{x^2}{\left( x^2 + 2 \right)\left( x^2 - 1 \right)}\]

\[ = \frac{A}{x^2 + 2} + \frac{B}{x^2 - 1}\]

\[ \Rightarrow x^2 = A\left( x^2 - 1 \right) + B\left( x^2 + 2 \right)\]

Equating the coefficients of `x^2` and constants, we get

\[1 = A + B\text{ and }0 = - A + 2B\]

\[\text{or }A = \frac{2}{3}\text{ and }B = \frac{1}{3}\]

\[ \therefore I = \int\left( \frac{\frac{2}{3}}{x^2 + 2} + \frac{\frac{1}{3}}{x^2 - 1} \right)dx\]

\[ = \frac{2}{3}\int\frac{1}{x^2 + 2}dx + \frac{1}{3}\int\frac{1}{x^2 - 1} dx\]

\[ = \frac{\sqrt{2}}{3} \tan^{- 1} \frac{x}{\sqrt{2}} + \frac{1}{6}\log\left| \frac{x - 1}{x + 1} \right| + c\]

\[\text{Hence, }\int\frac{x^2}{x^4 + x^2 - 2}dx = \frac{\sqrt{2}}{3} \tan^{- 1} \frac{x}{\sqrt{2}} + \frac{1}{6}\log\left| \frac{x - 1}{x + 1} \right| + c\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 68 | पृष्ठ १७८

संबंधित प्रश्‍न

Evaluate : `int_0^3dx/(9+x^2)`


\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

Evaluate the following integrals: 

`int "sec x"/"sec 2x" "dx"`

\[\int\frac{1 + \tan x}{1 - \tan x} dx\]

\[\int\frac{1}{x \log x} dx\]

\[\int\frac{sec x}{\log \left( \text{sec x }+ \text{tan x} \right)} dx\]

\[\int\frac{10 x^9 + {10}^x \log_e 10}{{10}^x + x^{10}} dx\]

\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]


\[\int\frac{1 + \sin x}{\sqrt{x - \cos x}} dx\]

 `   ∫     tan x    .  sec^2 x   \sqrt{1 - tan^2 x}     dx\ `

Evaluate the following integrals:

\[\int\frac{\sqrt{1 + x^2}}{x^4}dx\]

Evaluate the following integrals:

\[\int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx\]

 


Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

\[\int\frac{x + 5}{3 x^2 + 13x - 10}\text{ dx }\]

\[\int e^{2x} \text{ sin x cos x dx }\]

Evaluate the following integrals:

\[\int\left( x + 3 \right)\sqrt{3 - 4x - x^2} \text{  dx }\]

\[\int(3x + 1) \sqrt{4 - 3x - 2 x^2} \text{  dx }\]

Evaluate the following integral:

\[\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]

Evaluate the following integral:

\[\int\frac{2 x^2 + 1}{x^2 \left( x^2 + 4 \right)}dx\]

Evaluate the following integrals:

\[\int\frac{x^2}{(x - 1) ( x^2 + 1)}dx\]

\[\int\frac{( x^2 + 1) ( x^2 + 4)}{( x^2 + 3) ( x^2 - 5)} dx\]

\[\int\frac{x^2 + 1}{x^4 - x^2 + 1} \text{ dx }\]

Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .


Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]

 


Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]


Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]


Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]


Evaluate:

\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]


Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]


Evaluate: `int_  (x + sin x)/(1 + cos x )  dx`


Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Evaluate the following:

`int sqrt(2"a"x - x^2)  "d"x`


Evaluate the following:

`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×