English

Evaluate the Following Integral: ∫ X 2 X 4 + X 2 − 2 D X - Mathematics

Advertisements
Advertisements

Question

Evaluate the following integral:

\[\int\frac{x^2}{x^4 + x^2 - 2}dx\]
Sum

Solution

\[\text{Let }I = \int\frac{x^2}{x^4 + x^2 - 2}dx\]

We express

\[\frac{x^2}{x^4 + x^2 - 2} = \frac{x^2}{x^4 + 2 x^2 - x^2 - 2}\]

\[ = \frac{x^2}{\left( x^2 + 2 \right)\left( x^2 - 1 \right)}\]

\[ = \frac{A}{x^2 + 2} + \frac{B}{x^2 - 1}\]

\[ \Rightarrow x^2 = A\left( x^2 - 1 \right) + B\left( x^2 + 2 \right)\]

Equating the coefficients of `x^2` and constants, we get

\[1 = A + B\text{ and }0 = - A + 2B\]

\[\text{or }A = \frac{2}{3}\text{ and }B = \frac{1}{3}\]

\[ \therefore I = \int\left( \frac{\frac{2}{3}}{x^2 + 2} + \frac{\frac{1}{3}}{x^2 - 1} \right)dx\]

\[ = \frac{2}{3}\int\frac{1}{x^2 + 2}dx + \frac{1}{3}\int\frac{1}{x^2 - 1} dx\]

\[ = \frac{\sqrt{2}}{3} \tan^{- 1} \frac{x}{\sqrt{2}} + \frac{1}{6}\log\left| \frac{x - 1}{x + 1} \right| + c\]

\[\text{Hence, }\int\frac{x^2}{x^4 + x^2 - 2}dx = \frac{\sqrt{2}}{3} \tan^{- 1} \frac{x}{\sqrt{2}} + \frac{1}{6}\log\left| \frac{x - 1}{x + 1} \right| + c\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 178]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 68 | Page 178

RELATED QUESTIONS

Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`


`∫   x    \sqrt{x + 2}     dx ` 

\[\int\frac{x}{\sqrt{x + 4}} dx\]

\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

Evaluate the following integrals: 

`int "sec x"/"sec 2x" "dx"`

\[\int\frac{1 + \tan x}{1 - \tan x} dx\]

\[\int\frac{1}{x \log x} dx\]

\[\int\frac{e^{2x}}{e^{2x} - 2} dx\]

` ∫  {1+tan}/{ x + log  sec  x   dx} `

\[\int\frac{1}{\sqrt{x}\left( \sqrt{x} + 1 \right)} dx\]

\[\int\frac{1}{\sin x \cos^2 x} dx\]

\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]


Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

\[\int\frac{x + 5}{3 x^2 + 13x - 10}\text{ dx }\]

\[\int\frac{x^3 - 3x}{x^4 + 2 x^2 - 4}dx\]

Evaluate the following integrals: 

\[\int\frac{x + 2}{\sqrt{x^2 + 2x + 3}} \text{ dx }\]

\[\int\frac{1}{5 - 4 \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{\log x}{\left( x + 1 \right)^2}dx\]

 


\[\int(3x + 1) \sqrt{4 - 3x - 2 x^2} \text{  dx }\]

Evaluate the following integral:

\[\int\frac{x^3 + x + 1}{x^2 - 1}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{x^4 - x^2 - 12}dx\]

 


\[\int\frac{x^2 + 1}{x^4 - x^2 + 1} \text{ dx }\]

Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]


Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]


Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{  dx }\]


Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]


Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]


Evaluate:

\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]


Evaluate: `int_  (x + sin x)/(1 + cos x )  dx`


Evaluate the following:

`int sqrt(1 + x^2)/x^4 "d"x`


Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Evaluate the following:

`int x/(x^4 - 1) "d"x`


Evaluate the following:

`int ("d"x)/(xsqrt(x^4 - 1))`  (Hint: Put x2 = sec θ)


Evaluate the following:

`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×