English

∫ ( X 2 + 1 ) ( X 2 + 4 ) ( X 2 + 3 ) ( X 2 − 5 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{( x^2 + 1) ( x^2 + 4)}{( x^2 + 3) ( x^2 - 5)} dx\]
Sum

Solution

\[I=\int\frac{( x^2 + 1) ( x^2 + 4)}{( x^2 + 3) ( x^2 - 5)} dx\]

Since,

\[\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)} = \frac{\left[ \left( x^2 + 3 \right) - 2 \right]\left[ \left( x^2 - 5 \right) + 9 \right]}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}\]
\[ \Rightarrow \frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)} = \frac{\left( x^2 + 3 \right)\left( x^2 - 5 \right) + 9\left( x^2 + 3 \right) - 2\left( x^2 - 5 \right) - 18}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}\]

\[\Rightarrow \frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)} = 1 + \frac{9}{\left( x^2 - 5 \right)} - \frac{2}{\left( x^2 + 3 \right)} - \frac{18}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}.............(1)\]

Let 

\[I_1 = \int\frac{1}{( x^2 + 3)( x^2 - 5)}\text{ and }x^2 = y\]

\[\Rightarrow \frac{1}{\left( y + 3 \right)\left( y - 5 \right)} = \frac{A}{\left( y + 3 \right)} + \frac{B}{\left( y - 5 \right)}\]
\[ = \frac{A\left( y - 5 \right) + B\left( y + 3 \right)}{\left( y + 3 \right)\left( y - 5 \right)}\]
\[ \Rightarrow \frac{1}{\left( y + 3 \right)\left( y - 5 \right)} = \frac{\left( A + B \right)y - \left( 5A + 3B \right)}{\left( y + 3 \right)\left( y - 5 \right)}\]

Comparing coefficients, we get

\[A + B = 0\text{ and }5A + 3B = - 1\]
\[\text{By solving the equations, we get}\]
\[A = - \frac{1}{8}\text{ and }B = \frac{1}{8}\]

From (1), we get

\[I = \int\left[ 1 + \frac{9}{\left( x^2 - 5 \right)} - \frac{2}{\left( x^2 + 3 \right)} - 18\left( \frac{- 1}{8\left( x^2 + 3 \right)} + \frac{1}{8\left( x^2 - 5 \right)} \right) \right]dx\]

\[\Rightarrow I = \int\left[ 1 + \frac{27}{4\left( x^2 - 5 \right)} + \frac{1}{\left( x^2 + 3 \right)} \right]dx\]
\[ \Rightarrow I = \int1dx + \int\frac{27}{4\left( x^2 - 5 \right)}dx + \int\frac{1}{\left( x^2 + 3 \right)}dx\]
\[ \therefore I = x + \frac{27}{8\sqrt{5}}\ln\left( \left| \frac{x - \sqrt{5}}{x + \sqrt{5}} \right| \right) + \frac{1}{4\sqrt{3}} \tan^{- 1} \left( \frac{x}{\sqrt{3}} \right) + c\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 178]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 69 | Page 178

RELATED QUESTIONS

Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`


\[\int\frac{x - 1}{\sqrt{x + 4}} dx\]

\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

\[\int\frac{\cos 2x}{\left( \cos x + \sin x \right)^2} dx\]

\[\int\frac{\cos 2x + x + 1}{x^2 + \sin 2x + 2x} dx\]

\[\int\frac{sec x}{\log \left( \text{sec x }+ \text{tan x} \right)} dx\]

\[\int\frac{e^{x - 1} + x^{e - 1}}{e^x + x^e} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)^2} dx\]

\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]


\[\int\frac{1 + \sin x}{\sqrt{x - \cos x}} dx\]

Evaluate the following integrals:

\[\int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx\]

 


\[\int\frac{x^3 - 3x}{x^4 + 2 x^2 - 4}dx\]

\[\int\frac{1}{\sin x + \cos x} \text{ dx }\]

Evaluate the following integral :-

\[\int\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)}dx\]

\[\int\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} dx,\text{ where a, b, c are distinct}\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)}dx\]

\[\int\frac{2x + 1}{\left( x + 2 \right) \left( x - 3 \right)^2} dx\]

Evaluate the following integral:

\[\int\frac{1}{x\left( x^3 + 8 \right)}dx\]

 


Evaluate the following integral:

\[\int\frac{x^2}{x^4 + x^2 - 2}dx\]

Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]

 


Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]


Evaluate:  \[\int 2^x  \text{ dx }\]


Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]


Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]


Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]


Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]


Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{  dx }\]


Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]


Evaluate: 

\[\int\frac{1}{\sin^2 x \cos^2 x}dx\]

Evaluate the following:

`int sqrt(1 + x^2)/x^4 "d"x`


Evaluate the following:

`int ("d"x)/sqrt(16 - 9x^2)`


Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Evaluate the following:

`int sqrt(2"a"x - x^2)  "d"x`


Evaluate the following:

`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×