Advertisements
Advertisements
Question
Solution
Since,
\[\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)} = \frac{\left[ \left( x^2 + 3 \right) - 2 \right]\left[ \left( x^2 - 5 \right) + 9 \right]}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}\]
\[ \Rightarrow \frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)} = \frac{\left( x^2 + 3 \right)\left( x^2 - 5 \right) + 9\left( x^2 + 3 \right) - 2\left( x^2 - 5 \right) - 18}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}\]
Let
\[\Rightarrow \frac{1}{\left( y + 3 \right)\left( y - 5 \right)} = \frac{A}{\left( y + 3 \right)} + \frac{B}{\left( y - 5 \right)}\]
\[ = \frac{A\left( y - 5 \right) + B\left( y + 3 \right)}{\left( y + 3 \right)\left( y - 5 \right)}\]
\[ \Rightarrow \frac{1}{\left( y + 3 \right)\left( y - 5 \right)} = \frac{\left( A + B \right)y - \left( 5A + 3B \right)}{\left( y + 3 \right)\left( y - 5 \right)}\]
Comparing coefficients, we get
\[A + B = 0\text{ and }5A + 3B = - 1\]
\[\text{By solving the equations, we get}\]
\[A = - \frac{1}{8}\text{ and }B = \frac{1}{8}\]
From (1), we get
\[I = \int\left[ 1 + \frac{9}{\left( x^2 - 5 \right)} - \frac{2}{\left( x^2 + 3 \right)} - 18\left( \frac{- 1}{8\left( x^2 + 3 \right)} + \frac{1}{8\left( x^2 - 5 \right)} \right) \right]dx\]
\[\Rightarrow I = \int\left[ 1 + \frac{27}{4\left( x^2 - 5 \right)} + \frac{1}{\left( x^2 + 3 \right)} \right]dx\]
\[ \Rightarrow I = \int1dx + \int\frac{27}{4\left( x^2 - 5 \right)}dx + \int\frac{1}{\left( x^2 + 3 \right)}dx\]
\[ \therefore I = x + \frac{27}{8\sqrt{5}}\ln\left( \left| \frac{x - \sqrt{5}}{x + \sqrt{5}} \right| \right) + \frac{1}{4\sqrt{3}} \tan^{- 1} \left( \frac{x}{\sqrt{3}} \right) + c\]
APPEARS IN
RELATED QUESTIONS
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]
Evaluate:
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int ("d"x)/sqrt(16 - 9x^2)`
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`
Evaluate the following:
`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`