English

Evaluate the Following Integral: ∫ 1 X ( X 3 + 8 ) D X - Mathematics

Advertisements
Advertisements

Question

Evaluate the following integral:

\[\int\frac{1}{x\left( x^3 + 8 \right)}dx\]

 

Sum

Solution

\[\text{Let }I = \int\frac{1}{x\left( x^3 + 8 \right)}dx\]
We express
\[\frac{1}{x\left( x^3 + 8 \right)} = = \frac{A}{x} + \frac{B x^2 + Cx + D}{x^3 + 8}\]
\[ \Rightarrow 1 = A\left( x^3 + 8 \right) + \left( B x^2 + Cx + D \right)\left( x \right)\]
Equating the coefficients of `x^3 , x^2 , x` and constants, we get

\[0 = A + B\text{ and }0 = C\text{ and }0 = D\text{ and }1 = 8A\]
\[\text{or }A = \frac{1}{8}\text{ and }B = - \frac{1}{8}\text{ and }C = 0\text{ and }D = 0\]
\[ \therefore I = \int\left( \frac{\frac{1}{8}}{x} + \frac{- \frac{1}{8} x^2}{\left( x^3 + 8 \right)} \right)dx\]
\[ = \frac{1}{8}\int\frac{1}{x}dx - \frac{1}{24}\int\frac{3 x^2}{x^3 + 8} dx\]
\[ = \frac{1}{8}\log\left| x \right| - \frac{1}{24}\log\left| x^3 + 8 \right| + c\]
\[\text{Hence, }\int\frac{1}{x\left( x^3 + 8 \right)}dx = \frac{1}{8}\log\left| x \right| - \frac{1}{24}\log\left| x^3 + 8 \right| + c\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 177]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 47 | Page 177

RELATED QUESTIONS

Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`


\[\int\frac{x - 1}{\sqrt{x + 4}} dx\]

\[\int\frac{x}{\sqrt{x + 4}} dx\]

\[\int\frac{2 \cos x - 3 \sin x}{6 \cos x + 4 \sin x} dx\]

\[\int\frac{\cos 2x + x + 1}{x^2 + \sin 2x + 2x} dx\]

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]

\[\int\frac{sec x}{\log \left( \text{sec x }+ \text{tan x} \right)} dx\]

\[\int\frac{{cosec}^2 x}{1 + \cot x} dx\]

\[\int\frac{1}{\cos 3x - \cos x} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)^2} dx\]

 ` ∫       cot^3   x  "cosec"^2   x   dx `


\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]


\[\int\frac{x^3}{\left( x^2 + 1 \right)^3} dx\]

\[\int\frac{x^3 - 3x}{x^4 + 2 x^2 - 4}dx\]

Evaluate the following integrals:

\[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\]

 


Evaluate the following integral:

\[\int\frac{x^2 + 1}{\left( x^2 + 4 \right)\left( x^2 + 25 \right)}dx\]

\[\int\frac{2x + 1}{\left( x + 2 \right) \left( x - 3 \right)^2} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{x^4 - x^2 - 12}dx\]

 


Evaluate the following integral:

\[\int\frac{1}{\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x}dx\]

Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .


Evaluate:

\[\int\frac{x^2 + 4x}{x^3 + 6 x^2 + 5} \text{ dx }\]

Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]

 


Evaluate:  \[\int 2^x  \text{ dx }\]


Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]


Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{  dx }\]


Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]


Evaluate:  \[\int\frac{2}{1 - \cos2x}\text{ dx }\]


Evaluate: 

\[\int\frac{1}{\sin^2 x \cos^2 x}dx\]

Evaluate the following:

`int sqrt(1 + x^2)/x^4 "d"x`


Evaluate the following:

`int (3x - 1)/sqrt(x^2 + 9) "d"x`


Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Evaluate the following:

`int x/(x^4 - 1) "d"x`


Evaluate the following:

`int sqrt(2"a"x - x^2)  "d"x`


Evaluate the following:

`int ("d"x)/(xsqrt(x^4 - 1))`  (Hint: Put x2 = sec θ)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×