Advertisements
Advertisements
Question
Evaluate the following integral:
Solution
\[\text{Let }I = \int\frac{1}{x\left( x^3 + 8 \right)}dx\]
We express
\[\frac{1}{x\left( x^3 + 8 \right)} = = \frac{A}{x} + \frac{B x^2 + Cx + D}{x^3 + 8}\]
\[ \Rightarrow 1 = A\left( x^3 + 8 \right) + \left( B x^2 + Cx + D \right)\left( x \right)\]
Equating the coefficients of `x^3 , x^2 , x` and constants, we get
\[0 = A + B\text{ and }0 = C\text{ and }0 = D\text{ and }1 = 8A\]
\[\text{or }A = \frac{1}{8}\text{ and }B = - \frac{1}{8}\text{ and }C = 0\text{ and }D = 0\]
\[ \therefore I = \int\left( \frac{\frac{1}{8}}{x} + \frac{- \frac{1}{8} x^2}{\left( x^3 + 8 \right)} \right)dx\]
\[ = \frac{1}{8}\int\frac{1}{x}dx - \frac{1}{24}\int\frac{3 x^2}{x^3 + 8} dx\]
\[ = \frac{1}{8}\log\left| x \right| - \frac{1}{24}\log\left| x^3 + 8 \right| + c\]
\[\text{Hence, }\int\frac{1}{x\left( x^3 + 8 \right)}dx = \frac{1}{8}\log\left| x \right| - \frac{1}{24}\log\left| x^3 + 8 \right| + c\]
APPEARS IN
RELATED QUESTIONS
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
` ∫ cot^3 x "cosec"^2 x dx `
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{ dx }\]
Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]
Evaluate: \[\int\frac{2}{1 - \cos2x}\text{ dx }\]
Evaluate:
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int x/(x^4 - 1) "d"x`
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)