Advertisements
Advertisements
Question
Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
Solution
\[\text{ Let I} = \int\frac{dx}{\sqrt{1 - x^2}}\]
\[\text{ Let x }= \sin \theta\]
\[ \Rightarrow dx = \cos \theta\]
\[ \therefore I = \int\frac{\cos \theta}{\cos \theta}d\theta\]
\[ = \int d\theta\]
\[ = \theta + C\]
\[ = \sin^{- 1} x + C \left( \because x = \sin \theta \right)\]
APPEARS IN
RELATED QUESTIONS
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{ dx }\]
Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Evaluate:
Evaluate the following:
`int ("d"x)/sqrt(16 - 9x^2)`