Advertisements
Advertisements
Question
Write a value of
Solution
\[\text{ Let I }= \int \left( \frac{\log x^n}{x} \right) dx\]
\[ = \int \frac{n \log x}{x}dx \left( \because \log x^a = a \log x \right)\]
\[\text{ Let log x }= t\]
\[ \Rightarrow \frac{1}{x}dx = dt\]
\[ \therefore I = n \int \text{ t dt}\]
\[ = n . \frac{t^2}{2} + C\]
\[ = \frac{n . \left( \log x \right)^2}{2} + C \left( \because t = \log x \right)\]
APPEARS IN
RELATED QUESTIONS
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
` ∫ cot^3 x "cosec"^2 x dx `
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Evaluate:
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`