Advertisements
Advertisements
Question
Solution
\[\int\frac{2\cos x - 3\sin x}{6\cos x + 4\sin x}dx\]
\[ \Rightarrow \int\frac{2\cos x - 3\sin x}{2\left( 3\cos x + 2\sin x \right)}dt\]
\[Let, 3\cos x + 2\sin x = t\]
\[ \Rightarrow 2\cos x - 3\sin x = \frac{dt}{dx}\]
\[ \Rightarrow \left( 2\cos x - 3\sin x \right)dx = dt\]
\[Now, \int\frac{2\cos x - 3\sin x}{2\left( 3\cos x + 2\sin x \right)}dt\]
\[ = \int\frac{dt}{2t}\]
\[ = \frac{1}{2}\text{log}\left| t \right| + C\]
\[ = \frac{1}{2} \text{log} \left| 3\cos x + 2\sin x \right| + C\]
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^3dx/(9+x^2)`
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`
Evaluate the following:
`int ("d"x)/sqrt(16 - 9x^2)`
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int x/(x^4 - 1) "d"x`
Evaluate the following:
`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`