Advertisements
Advertisements
Question
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Solution
\[\text{ Let I }= \int \frac{x^2 dx}{1 + x^3}\]
\[\text{ Putting 1} + x^3 = t\]
\[ \Rightarrow 3 x^2 \text{ dx} = dt\]
\[ \Rightarrow x^2 \text{ dx} = \frac{dt}{3}\]
\[ \therefore I = \frac{1}{3}\int \frac{dt}{t}\]
\[ = \frac{1}{3}\text{ ln } \left| t \right| + C\]
\[ = \frac{1}{3}\text{ ln} \left| 1 + x^3 \right| + C \left( \because t = 1 + x^3 \right)\]
APPEARS IN
RELATED QUESTIONS
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]
Evaluate: \[\int\frac{2}{1 - \cos2x}\text{ dx }\]
Evaluate:
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`
Evaluate the following:
`int ("d"x)/sqrt(16 - 9x^2)`
Evaluate the following:
`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`