Advertisements
Advertisements
Question
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
Solution
\[\int \sqrt{x^2 - 9} \text{ dx }\]
\[ = \int \sqrt{x^2 - 3^2} \text{ dx}\]
\[ = \frac{x}{2}\sqrt{x^2 - 3^2} - \frac{3^2}{2}\text{ ln} \left| x + \sqrt{x^2 - 3} \right| + C \left( \because \sqrt{x^2 - a^2} = \frac{x}{2}\sqrt{x^2 - a^2} - \frac{a^2}{2}\text{ ln } \left| x + \sqrt{x^2 + a^2} \right| + C \right)\]
\[ = \frac{x}{2}\sqrt{x^2 - 9} - \frac{9}{2}\text{ ln } \left| x + \sqrt{x^2 - 9} \right| + C\]
APPEARS IN
RELATED QUESTIONS
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Integrate the functions:
`cos x /(sqrt(1+sinx))`
`int (dx)/(sin^2 x cos^2 x)` equals:
Solve: dy/dx = cos(x + y)
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Write a value of
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______
`int x/(x + 2) "d"x`
`int (7x + 9)^13 "d"x` ______ + c
`int1/(4 + 3cos^2x)dx` = ______
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
Find `int dx/sqrt(sin^3x cos(x - α))`.
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
Evaluate the following.
`int x^3/(sqrt(1+x^4))dx`
Evaluate `int1/(x(x - 1))dx`
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
Evaluate:
`int 1/(1 + cosα . cosx)dx`
Evaluate `int (1)/(x(x - 1))dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate:
`intsqrt(sec x/2 - 1)dx`