English

Write a Value of ∫ √ X 2 − 9 D X - Mathematics

Advertisements
Advertisements

Question

Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]

Sum

Solution

\[\int \sqrt{x^2 - 9} \text{ dx }\]
\[ = \int \sqrt{x^2 - 3^2} \text{ dx}\]
\[ = \frac{x}{2}\sqrt{x^2 - 3^2} - \frac{3^2}{2}\text{ ln} \left| x + \sqrt{x^2 - 3} \right| + C \left( \because \sqrt{x^2 - a^2} = \frac{x}{2}\sqrt{x^2 - a^2} - \frac{a^2}{2}\text{ ln } \left| x + \sqrt{x^2 + a^2} \right| + C \right)\]
\[ = \frac{x}{2}\sqrt{x^2 - 9} - \frac{9}{2}\text{ ln } \left| x + \sqrt{x^2 - 9} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Very Short Answers [Page 198]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Very Short Answers | Q 37 | Page 198

RELATED QUESTIONS

Evaluate: `int sqrt(tanx)/(sinxcosx) dx`


Integrate the functions:

`sqrt(sin 2x) cos 2x`


Integrate the functions:

`cos x /(sqrt(1+sinx))`


`int (dx)/(sin^2 x cos^2 x)` equals:


Solve: dy/dx = cos(x + y)


\[\int\cos x \sqrt{4 - \sin^2 x}\text{ dx}\]

Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]


Write a value of

\[\int\frac{a^x}{3 + a^x} \text{ dx}\]

Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]


Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].


\[\text{ If } \int\left( \frac{x - 1}{x^2} \right) e^x dx = f\left( x \right) e^x + C, \text{ then  write  the value of  f}\left( x \right) .\]

The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is


Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`


Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`


Integrate the following functions w.r.t. x:

`x^5sqrt(a^2 + x^2)`


Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`


Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`


Evaluate the following : `int (1)/(7 + 2x^2).dx`


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______


`int x/(x + 2)  "d"x`


`int (7x + 9)^13  "d"x` ______ + c


`int1/(4 + 3cos^2x)dx` = ______ 


`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.


The value of `sqrt(2) int (sinx  dx)/(sin(x - π/4))` is ______.


Find `int dx/sqrt(sin^3x cos(x - α))`.


Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.


Evaluate the following.

`int x^3/(sqrt(1+x^4))dx`


Evaluate `int1/(x(x - 1))dx`


Solve the following Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)dx`


Evaluate:

`int 1/(1 + cosα . cosx)dx`


Evaluate `int (1)/(x(x - 1))dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate the following:

`int x^3/(sqrt(1+x^4))dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate:

`intsqrt(sec  x/2 - 1)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×