Advertisements
Advertisements
Question
Find `int dx/sqrt(sin^3x cos(x - α))`.
Solution
Let I = `int dx/sqrt(sin^3x cos(x - α))`
= `int dx/sqrt((sin^4x)/sinx [cosx cosα + sinx sinα]`
= `int dx/(sin^2 xsqrt(cotx cosα + sinα)`
= `int ("cosec"^2x dx)/sqrt(cotx cosα + sinα)`
Let cot x cos α + sin α = t
Then, dt = – cosec2 x cos α dx
∴ I = `int (-dt)/(cosαsqrt(t))`
= `(-2sqrt(t))/cosα + C`
= `(-2sqrt(cotx cosα + sinα))/cosα + C`
= `- 2 sec αsqrt(cotx cosα + sinα) + C`.
RELATED QUESTIONS
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`
Evaluate the following : `int sinx/(sin 3x).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`
Choose the correct options from the given alternatives :
`int (e^x(x - 1))/x^2*dx` =
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
`int cot^2x "d"x`
If f'(x) = `x + 1/x`, then f(x) is ______.
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
`int "cosec"^4x dx` = ______.
Evaluate the following.
`intx sqrt(1 +x^2) dx`
`int (cos4x)/(sin2x + cos2x)dx` = ______.