Advertisements
Advertisements
Question
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
Solution
Let I = `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`
Take cot–1 x = t
∴ x = cot t
∴ dx = – cosec2 t dt
∴ I = `int e^t ((1 + cot^2 t - cot t)/(1 + cot^2 t))(-"cosec"^2t) dt`
= `int - e^t (("cosec"^2t - cot t))/("cosec"^2t) xx "cosec"^2 t dt`
= `int - e^t ("cosec"^2 t - cot t)dt`
= `int e^t (cot t - "cosec"^2t)dt`
∴ Now, taking f(t) = cot t
Then f'(t) = – cosec2 t
∴ I = `int e^t [f(t) + f^'(t)]dt`
= et f(t) + C
= `e^(cot^(–1)x) |cot (cot^-1 x)| + C`
= `e^(cot^(-1)x) xx x + C`
= `xe^(cot^(–1)x) + C`.
RELATED QUESTIONS
`int1/xlogxdx=...............`
(A)log(log x)+ c
(B) 1/2 (logx )2+c
(C) 2log x + c
(D) log x + c
Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`
Integrate the function in (x2 + 1) log x.
Integrate the function in `((x- 3)e^x)/(x - 1)^3`.
Evaluate the following : `int x^3.tan^-1x.dx`
Evaluate the following : `int x^3.logx.dx`
Evaluate the following : `int log(logx)/x.dx`
Evaluate the following : `int sin θ.log (cos θ).dθ`
Evaluate the following : `int x.cos^3x.dx`
Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`
Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Choose the correct options from the given alternatives :
`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
Integrate the following w.r.t.x : e2x sin x cos x
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate the following.
`int "e"^"x" "x"/("x + 1")^2` dx
`int ("x" + 1/"x")^3 "dx"` = ______
`int (sinx)/(1 + sin x) "d"x`
`int (cos2x)/(sin^2x cos^2x) "d"x`
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
Evaluate the following.
`int x^3 e^(x^2) dx`
`int(xe^x)/((1+x)^2) dx` = ______
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.
Evaluate the following.
`intx^2e^(4x)dx`