Advertisements
Advertisements
Question
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Solution
Let I = `int xsqrt(5 - 4x - x^2).dx`
Let x = `"A"[d/dx(5 - 4x - x^2)] + "B"`
= A [– 4 – 2x] + B
= –2Ax + (B – 4A)
Comparing the coefficients of x and the constant term on both the sides, we get
–2A = 1, B – 4A = 0
∴ A = `-(1)/(2), "B" = 4"A" = 4(-1/2)` = – 2
∴ x = `-(1)/(2)(- 4 - 2x) - 2`
∴ I = `int [ -1/2 (- 4 - 2x) - 2]sqrt(5 - 4x - x^2).dx`
= `-(1)/(2) int (- 4 - 2x) sqrt(5 - 4x - x^2).dx - 2 int sqrt(5 - 4x - x^2).dx`
= I1 - I2
In I1, put 5 - 4x - x2 = t
∴ (– 4 – 2x).dx = dt
∴ I1 = `(1)/(2)int t^(1/2).dt `
= `-(1)/(2)(t^(3/2)/(3/2)) + c_1`
= `-(1)/(3)(5 - 4x - x^2)^(3/2) + c_1`
I2 = `2 int sqrt(5 - 4x - x^2).dx`
= `2 int sqrt(5 - (x^2 + 4x)).dx`
= `2 int sqrt(9 - (x^2 + 4x + 4)).dx`
= `2 int sqrt(3^2 - (x + 2)^2).dx`
= `2[((x + 2)/2) sqrt(3^2 - (x + 2)^2) + 3^2/(2)sin^-1 ((x + 2)/3)] + c_2`
= `(x + 2)sqrt(5 - 4x - x^2) + 9sin^-1 ((x + 2)/3) + c_2`
∴ I = `-(1)/(3)(5 - 4x - x^2)^(3/2) - (x + 2) sqrt(5 - 4x - x^2) - 9sin^-1 ((x + 2)/3) + c`, where c = c1 + c2 .
APPEARS IN
RELATED QUESTIONS
Integrate : sec3 x w. r. t. x.
`int1/xlogxdx=...............`
(A)log(log x)+ c
(B) 1/2 (logx )2+c
(C) 2log x + c
(D) log x + c
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Integrate the function in x sin 3x.
Integrate the function in x log 2x.
Integrate the function in x sin-1 x.
Integrate the function in (sin-1x)2.
Integrate the function in `(xe^x)/(1+x)^2`.
Integrate the function in e2x sin x.
`int e^x sec x (1 + tan x) dx` equals:
Evaluate the following:
`int sec^3x.dx`
Evaluate the following : `int sin θ.log (cos θ).dθ`
Evaluate the following : `int x.cos^3x.dx`
Evaluate the following:
`int x.sin 2x. cos 5x.dx`
Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`
Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)]
Choose the correct options from the given alternatives :
`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =
Choose the correct options from the given alternatives :
`int (x- sinx)/(1 - cosx)*dx` =
Choose the correct options from the given alternatives :
`int (1)/(cosx - cos^2x)*dx` =
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Integrate the following w.r.t.x : sec4x cosec2x
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate the following.
∫ x log x dx
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
Evaluate the following.
`int "e"^"x" (1/"x" - 1/"x"^2)`dx
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
Evaluate: `int "dx"/(5 - 16"x"^2)`
`int (sinx)/(1 + sin x) "d"x`
`int 1/(4x + 5x^(-11)) "d"x`
`int (sin(x - "a"))/(cos (x + "b")) "d"x`
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
`int"e"^(4x - 3) "d"x` = ______ + c
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
Evaluate `int 1/(x(x - 1)) "d"x`
Evaluate `int 1/(4x^2 - 1) "d"x`
`int "e"^x x/(x + 1)^2 "d"x`
`int logx/(1 + logx)^2 "d"x`
`int 1/sqrt(x^2 - 8x - 20) "d"x`
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
Solve: `int sqrt(4x^2 + 5)dx`
`int_0^1 x tan^-1 x dx` = ______.
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
Find: `int e^(x^2) (x^5 + 2x^3)dx`.
`int(1-x)^-2 dx` = ______
`int1/sqrt(x^2 - a^2) dx` = ______
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate `int(3x-2)/((x+1)^2(x+3)) dx`
Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.
Solution: (x2 + y2) dx - 2xy dy = 0
∴ `dy/dx=(x^2+y^2)/(2xy)` ...(1)
Puty = vx
∴ `dy/dx=square`
∴ equation (1) becomes
`x(dv)/dx = square`
∴ `square dv = dx/x`
On integrating, we get
`int(2v)/(1-v^2) dv =intdx/x`
∴ `-log|1-v^2|=log|x|+c_1`
∴ `log|x| + log|1-v^2|=logc ...["where" - c_1 = log c]`
∴ x(1 - v2) = c
By putting the value of v, the general solution of the D.E. is `square`= cx
`int logx dx = x(1+logx)+c`
Solve the following
`int_0^1 e^(x^2) x^3 dx`
Evaluate:
`int e^(ax)*cos(bx + c)dx`
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
Evaluate:
`int (sin(x - a))/(sin(x + a))dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following.
`intx^3/sqrt(1+x^4) dx`
Evaluate the following.
`intx^3e^(x^2) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate:
`int x^2 cos x dx`