Advertisements
Advertisements
Question
Integrate the function in x sin-1 x.
Solution
Let `I = int x sin^-1 x dx = int sin^-1 x* x dx`
`= sin^-1 x* (x^2/2) - int [d/dx (sin^-1 x) * x^2/2] dx`
`= sin^-1 x (x^2/2) - int 1/sqrt (1 - x^2)* x^2/2 dx`
`= x^2/2 sin^-1 x - 1/2 int x^2/ sqrt (1 - x^2) dx`
`= x^2/2 sin^-1 x - 1/2 I_1`
`I = x^2/2 sin^-1 x - 1/2 I_1` ....(i)
Where `I_1 = int x^2/sqrt (1 - x^2) dx`
Put x = sin θ
⇒ dx = cosθ dθ
∴ `I_1 = int (sin^2 theta)/sqrt (1- sin^2 theta) cos d theta`
`= int (sin^2 theta)/(cos theta) * cos theta d theta`
`= int sin^2 theta d theta = 1/2 int (1 - cos 2 theta) d theta`
`= 1/2int d theta - 1/2 int cos 2 theta d theta 1/2 theta - 1/2 (sin 2 theta)/2 + C`
`1/2 theta - 1/2 sin theta cos theta + C`
`1/2 sin^-1x - 1/2x sqrt(1 - x^2) + C` ....(ii)
`[∵ sin theta = x ⇒ cos theta = sqrt (1 - sin^2 theta) = sqrt (1 - x^2)]`
From (i) and (ii), we get
∴ `I = x^2/2 sin^-1 x - 1/2 [1/2 sin^-1 x - 1/2 x sqrt(1 - x^2)] + C`
`= 1/4 sin^-1 x* (2x^2 - 1) + (x sqrt (1 - x^2))/4 + C`
APPEARS IN
RELATED QUESTIONS
Integrate the function in x sin x.
Integrate the function in `x^2e^x`.
Integrate the function in x log x.
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following : `int x.sin^2x.dx`
Evaluate the following : `int sin θ.log (cos θ).dθ`
Evaluate the following : `int cos(root(3)(x)).dx`
Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)]
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Evaluate the following.
`int "e"^"x" (1/"x" - 1/"x"^2)`dx
Evaluate the following.
`int "e"^"x" "x - 1"/("x + 1")^3` dx
Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`
`int 1/sqrt(x^2 - 8x - 20) "d"x`
The value of `int "e"^(5x) (1/x - 1/(5x^2)) "d"x` is ______.
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
`int tan^-1 sqrt(x) "d"x` is equal to ______.
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
Find: `int e^x.sin2xdx`
Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.
Solve: `int sqrt(4x^2 + 5)dx`
If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
`intsqrt(1+x) dx` = ______
`int logx dx = x(1+logx)+c`
Solve the following
`int_0^1 e^(x^2) x^3 dx`
Evaluate:
`int e^(ax)*cos(bx + c)dx`
Evaluate:
`int (logx)^2 dx`
Evaluate:
`int (sin(x - a))/(sin(x + a))dx`
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Evaluate the following.
`intx^3/sqrt(1+x^4) dx`
If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.
Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3) dx`