English

Integrate the function in x sin-1 x. - Mathematics

Advertisements
Advertisements

Question

Integrate the function in x sin-1 x.

Sum

Solution

Let `I = int x sin^-1 x dx = int sin^-1 x* x dx`

`= sin^-1 x* (x^2/2) - int [d/dx (sin^-1 x) * x^2/2]  dx`

`= sin^-1 x (x^2/2) - int 1/sqrt (1 - x^2)* x^2/2  dx`

`= x^2/2 sin^-1 x - 1/2 int x^2/ sqrt (1 - x^2) dx`

`= x^2/2 sin^-1 x - 1/2 I_1`

`I = x^2/2 sin^-1 x - 1/2 I_1`              ....(i)

Where `I_1 = int x^2/sqrt (1 - x^2)  dx`

Put x = sin θ 

⇒ dx = cosθ dθ

∴ `I_1 = int (sin^2 theta)/sqrt (1- sin^2 theta) cos d theta`

`= int (sin^2 theta)/(cos theta) * cos theta d theta`

`= int sin^2 theta d theta  = 1/2 int (1 - cos 2 theta) d theta`

`= 1/2int d theta - 1/2 int cos 2 theta d theta 1/2 theta - 1/2 (sin 2 theta)/2 + C`

  `1/2 theta - 1/2 sin theta cos theta + C`

`1/2 sin^-1x - 1/2x sqrt(1 - x^2) + C`                 ....(ii)

`[∵ sin theta = x ⇒ cos theta = sqrt (1 - sin^2 theta) = sqrt (1 - x^2)]`

From (i) and (ii), we get

∴ `I = x^2/2 sin^-1 x - 1/2 [1/2 sin^-1 x - 1/2 x sqrt(1 - x^2)] + C`

`= 1/4 sin^-1 x* (2x^2 - 1) + (x sqrt (1 - x^2))/4 + C`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.6 [Page 327]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.6 | Q 7 | Page 327

RELATED QUESTIONS

Integrate the function in x sin x.


Integrate the function in `x^2e^x`.


Integrate the function in x log x.


Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.


Evaluate the following : `int x^2tan^-1x.dx`


Evaluate the following : `int x.sin^2x.dx`


Evaluate the following : `int sin θ.log (cos θ).dθ`


Evaluate the following : `int cos(root(3)(x)).dx`


Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`


Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`


Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)] 


Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`


Evaluate the following.

`int "x"^3 "e"^("x"^2)`dx


Evaluate the following.

`int "e"^"x" (1/"x" - 1/"x"^2)`dx


Evaluate the following.

`int "e"^"x" "x - 1"/("x + 1")^3` dx


Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`


`int 1/sqrt(x^2 - 8x - 20)  "d"x`


The value of `int "e"^(5x) (1/x - 1/(5x^2))  "d"x` is ______.


Evaluate the following:

`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`


`int tan^-1 sqrt(x)  "d"x` is equal to ______.


The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x))  dx` is


`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`


Find: `int e^x.sin2xdx`


Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.


Solve: `int sqrt(4x^2 + 5)dx`


If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.


The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.


`intsqrt(1+x)  dx` = ______


`int logx  dx = x(1+logx)+c`


Solve the following

`int_0^1 e^(x^2) x^3 dx`


Evaluate:

`int e^(ax)*cos(bx + c)dx`


Evaluate:

`int (logx)^2 dx`


Evaluate:

`int (sin(x - a))/(sin(x + a))dx`


If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv  dx - int(d/dx u)(intv  dx)dx`. Hence evaluate: `intx cos x  dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)  dx`


If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.


Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×