Advertisements
Advertisements
Question
Integrate the function in x2 log x.
Solution
Let `I = int x^2 log x dx`
`= log (x) (x^3/3) - int [d/dx (log x) (x^3/3)] dx`
`= log x. x^3/3 - int 1/x. x^3/3 dx`
`= x^3/3 log x - 1/3 int x^2 dx`
`= x^3/3 log x - 1/3. x^3/3 + C`
`= x^3/3 log x - x^3/9 + C`
APPEARS IN
RELATED QUESTIONS
Prove that:
`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`
Integrate the function in `x^2e^x`.
Integrate the function in e2x sin x.
Evaluate the following : `int x.sin^2x.dx`
Evaluate the following: `int x.sin^-1 x.dx`
Evaluate the following : `int cos sqrt(x).dx`
Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`
Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
Choose the correct options from the given alternatives :
`int (x- sinx)/(1 - cosx)*dx` =
Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Evaluate the following.
`int "e"^"x" (1/"x" - 1/"x"^2)`dx
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
`int (sinx)/(1 + sin x) "d"x`
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.
`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
`int 1/sqrt(x^2 - 9) dx` = ______.
Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`
If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
Find: `int e^(x^2) (x^5 + 2x^3)dx`.
Solution of the equation `xdy/dx=y log y` is ______
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate:
`int (logx)^2 dx`
Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`
Evaluate `int tan^-1x dx`
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Evaluate:
`int1/(x^2 + 25)dx`
Evaluate the following:
`intx^3e^(x^2)dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate the following.
`intx^2e^(4x)dx`
Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3) dx`