English

∫1x2-9dx = ______. - Mathematics and Statistics

Advertisements
Advertisements

Question

`int 1/sqrt(x^2 - 9) dx` = ______.

Options

  • `1/3 log |x + sqrt(x^2 - 9)| + c`

  • `log |x + sqrt(x^2 - 9)| + c`

  • `3log |x + sqrt(x^2 - 9)| + c`

  • `log |x - sqrt(x^2 - 9)| + c`

MCQ
Fill in the Blanks

Solution

`int 1/sqrt(x^2 - 9) dx` = `bb(log |x + sqrt(x^2 - 9)| + c)`.

Explanation:

`int 1/sqrt(x^2 - 9) dx =  int 1/sqrt(x^2 - 3^2) dx`

= `log |x + sqrt(x^2 - 3^2)| + c`

= `log |x + sqrt(x^2 - 9)| + c`

shaalaa.com
  Is there an error in this question or solution?
2021-2022 (March) Set 1

APPEARS IN

RELATED QUESTIONS

If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:

(A) 0

(B) π

(C) π/2

(D) π/4


`int1/xlogxdx=...............`

(A)log(log x)+ c

(B) 1/2 (logx )2+c

(C) 2log x + c

(D) log x + c


Integrate the function in x sin x.


Integrate the function in x sec2 x.


Evaluate the following : `int cos(root(3)(x)).dx`


Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]e 


Choose the correct options from the given alternatives :

`int sin (log x)*dx` =


Choose the correct alternative from the following.

`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5  "dx"` = 


`int (cos2x)/(sin^2x cos^2x)  "d"x`


`int sin4x cos3x  "d"x`


`int ("e"^xlog(sin"e"^x))/(tan"e"^x)  "d"x`


`int ("d"x)/(x - x^2)` = ______


`int 1/(x^2 - "a"^2)  "d"x` = ______ + c


State whether the following statement is True or False:

If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1|  + B log|x – 2|, then A + B = 1


`int "e"^x x/(x + 1)^2  "d"x`


`int log x * [log ("e"x)]^-2` dx = ?


The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1)  dx` is


`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`


If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.


Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.


`int(1-x)^-2 dx` = ______


`intsqrt(1+x)  dx` = ______


Evaluate:

`int (sin(x - a))/(sin(x + a))dx`


Complete the following activity:

`int_0^2 dx/(4 + x - x^2) `

= `int_0^2 dx/(-x^2 + square + square)`

= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`

= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`

= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)  dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`intx^3/sqrt(1+x^4)`dx


Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×