Advertisements
Advertisements
Question
`int 1/sqrt(x^2 - 9) dx` = ______.
Options
`1/3 log |x + sqrt(x^2 - 9)| + c`
`log |x + sqrt(x^2 - 9)| + c`
`3log |x + sqrt(x^2 - 9)| + c`
`log |x - sqrt(x^2 - 9)| + c`
Solution
`int 1/sqrt(x^2 - 9) dx` = `bb(log |x + sqrt(x^2 - 9)| + c)`.
Explanation:
`int 1/sqrt(x^2 - 9) dx = int 1/sqrt(x^2 - 3^2) dx`
= `log |x + sqrt(x^2 - 3^2)| + c`
= `log |x + sqrt(x^2 - 9)| + c`
APPEARS IN
RELATED QUESTIONS
If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:
(A) 0
(B) π
(C) π/2
(D) π/4
`int1/xlogxdx=...............`
(A)log(log x)+ c
(B) 1/2 (logx )2+c
(C) 2log x + c
(D) log x + c
Integrate the function in x sin x.
Integrate the function in x sec2 x.
Evaluate the following : `int cos(root(3)(x)).dx`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Choose the correct alternative from the following.
`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5 "dx"` =
`int (cos2x)/(sin^2x cos^2x) "d"x`
`int sin4x cos3x "d"x`
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
`int ("d"x)/(x - x^2)` = ______
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
`int "e"^x x/(x + 1)^2 "d"x`
`int log x * [log ("e"x)]^-2` dx = ?
The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx` is
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.
Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.
`int(1-x)^-2 dx` = ______
`intsqrt(1+x) dx` = ______
Evaluate:
`int (sin(x - a))/(sin(x + a))dx`
Complete the following activity:
`int_0^2 dx/(4 + x - x^2) `
= `int_0^2 dx/(-x^2 + square + square)`
= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`
= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`
= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following.
`intx^3/sqrt(1+x^4) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intx^3/sqrt(1+x^4)`dx
Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3) dx`