Advertisements
Advertisements
Question
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Solution
Let I = `int e^x [2 + cotx - "cosec"^2x].dx`
Put f(x) = 2 + cot x
∴ f'(x) = `d/dx (2 + cot x)`
= `d/dx (2) + d/dx (cot x)`
= 0 – cosec2x
= – cosec2x
∴ I = `int e^x [f(x) + f'(x)].dx`
= ex f(x) + c
= ex (2 + cot x) + c.
APPEARS IN
RELATED QUESTIONS
Prove that:
`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Integrate the function in x sin x.
Integrate the function in `x^2e^x`.
Integrate the function in x log x.
Integrate the function in x log 2x.
Integrate the function in x2 log x.
Integrate the function in tan-1 x.
Integrate the function in ex (sinx + cosx).
Integrate the function in `((x- 3)e^x)/(x - 1)^3`.
Find :
`∫(log x)^2 dx`
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`
Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Choose the correct options from the given alternatives :
`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Choose the correct options from the given alternatives :
`int (x- sinx)/(1 - cosx)*dx` =
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
Integrate the following with respect to the respective variable : cos 3x cos 2x cos x
Integrate the following w.r.t.x : sec4x cosec2x
Evaluate the following.
∫ x log x dx
Evaluate the following.
`int "e"^"x" (1/"x" - 1/"x"^2)`dx
Evaluate the following.
`int "e"^"x" "x"/("x + 1")^2` dx
Evaluate the following.
`int (log "x")/(1 + log "x")^2` dx
Choose the correct alternative from the following.
`int (1 - "x")^(-2) "dx"` =
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx
Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
Evaluate: `int "dx"/(5 - 16"x"^2)`
`int (sinx)/(1 + sin x) "d"x`
`int (sin(x - "a"))/(cos (x + "b")) "d"x`
`int ["cosec"(logx)][1 - cot(logx)] "d"x`
`int sin4x cos3x "d"x`
`int sqrt(tanx) + sqrt(cotx) "d"x`
Choose the correct alternative:
`intx^(2)3^(x^3) "d"x` =
`int(x + 1/x)^3 dx` = ______.
`int"e"^(4x - 3) "d"x` = ______ + c
Evaluate `int 1/(x log x) "d"x`
∫ log x · (log x + 2) dx = ?
`int log x * [log ("e"x)]^-2` dx = ?
`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.
`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
`int 1/sqrt(x^2 - 9) dx` = ______.
State whether the following statement is true or false.
If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
Solve: `int sqrt(4x^2 + 5)dx`
`int(logx)^2dx` equals ______.
`int_0^1 x tan^-1 x dx` = ______.
Find `int e^x ((1 - sinx)/(1 - cosx))dx`.
`int(1-x)^-2 dx` = ______
`intsqrt(1+x) dx` = ______
Solution of the equation `xdy/dx=y log y` is ______
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
`int1/(x+sqrt(x)) dx` = ______
Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.
Solution: (x2 + y2) dx - 2xy dy = 0
∴ `dy/dx=(x^2+y^2)/(2xy)` ...(1)
Puty = vx
∴ `dy/dx=square`
∴ equation (1) becomes
`x(dv)/dx = square`
∴ `square dv = dx/x`
On integrating, we get
`int(2v)/(1-v^2) dv =intdx/x`
∴ `-log|1-v^2|=log|x|+c_1`
∴ `log|x| + log|1-v^2|=logc ...["where" - c_1 = log c]`
∴ x(1 - v2) = c
By putting the value of v, the general solution of the D.E. is `square`= cx
`inte^(xloga).e^x dx` is ______
Solve the following
`int_0^1 e^(x^2) x^3 dx`
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
Evaluate `int tan^-1x dx`
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Evaluate:
`int1/(x^2 + 25)dx`
Evaluate the following:
`intx^3e^(x^2)dx`
Evaluate the following.
`intx^3/sqrt(1+x^4) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate:
`int x^2 cos x dx`
Evaluate the following.
`intx^2e^(4x)dx`
Evaluate `int(1 + x + x^2/(2!))dx`.