मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]e 

बेरीज

उत्तर

Let I = `int e^x [2 + cotx - "cosec"^2x].dx`

Put f(x) = 2 + cot x

∴ f'(x) = `d/dx (2 + cot x)`

= `d/dx (2) + d/dx (cot x)`

= 0 – cosec2x
= – cosec2x
∴ I = `int e^x [f(x) + f'(x)].dx`
= ex f(x) + c
= ex (2 + cot x) + c.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Exercise 3.3 [पृष्ठ १३८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Exercise 3.3 | Q 3.1 | पृष्ठ १३८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Integrate the function in x sin 3x.


Integrate the function in x log 2x.


Integrate the function in x tan-1 x.


Integrate the function in (sin-1x)2.


Integrate the function in ex (sinx + cosx).


Integrate the function in `e^x (1 + sin x)/(1+cos x)`.


Integrate the function in `e^x (1/x - 1/x^2)`.


Integrate the function in `((x- 3)e^x)/(x - 1)^3`.


Find : 

`∫(log x)^2 dx`


Evaluate the following : `int x^2.log x.dx`


Evaluate the following : `int x^2tan^-1x.dx`


Evaluate the following : `int x^3.tan^-1x.dx`


Evaluate the following : `int x^3.logx.dx`


Evaluate the following: `int x.sin^-1 x.dx`


Evaluate the following : `int x.cos^3x.dx`


Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`


Evaluate the following : `int logx/x.dx`


Evaluate the following : `int cos(root(3)(x)).dx`


Integrate the following functions w.r.t. x : `e^(2x).sin3x`


Integrate the following functions w.r.t.x:

`e^-x cos2x`


Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`


Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`


Integrate the following functions w.r.t.x:

`e^(5x).[(5x.logx + 1)/x]`


Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)] 


Choose the correct options from the given alternatives :

`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =


Choose the correct options from the given alternatives :

`int (log (3x))/(xlog (9x))*dx` =


If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.


Choose the correct options from the given alternatives :

`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =


Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`


Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`


Integrate the following w.r.t. x: `(1 + log x)^2/x`


Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`


Evaluate the following.

`int "x"^2 "e"^"4x"`dx


Evaluate the following.

`int "x"^3 "e"^("x"^2)`dx


Evaluate the following.

`int "e"^"x" (1/"x" - 1/"x"^2)`dx


Evaluate the following.

`int [1/(log "x") - 1/(log "x")^2]` dx


`int ("x" + 1/"x")^3 "dx"` = ______


Choose the correct alternative from the following.

`int (1 - "x")^(-2) "dx"` = 


`int (cos2x)/(sin^2x cos^2x)  "d"x`


`int ("e"^xlog(sin"e"^x))/(tan"e"^x)  "d"x`


`int sqrt(tanx) + sqrt(cotx)  "d"x`


Choose the correct alternative:

`int ("d"x)/((x - 8)(x + 7))` =


`int"e"^(4x - 3) "d"x` = ______ + c


`int (x^2 + x - 6)/((x - 2)(x - 1))  "d"x` = x + ______ + c


State whether the following statement is True or False:

If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1|  + B log|x – 2|, then A + B = 1


Evaluate `int (2x + 1)/((x + 1)(x - 2))  "d"x`


`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.


`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.


`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.


The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1)  dx` is


`int 1/sqrt(x^2 - a^2)dx` = ______.


If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.


`int_0^1 x tan^-1 x  dx` = ______.


Evaluate :

`int(4x - 6)/(x^2 - 3x + 5)^(3/2)  dx`


`int(1-x)^-2 dx` = ______


`intsqrt(1+x)  dx` = ______


Evaluate `int(3x-2)/((x+1)^2(x+3))  dx`


Evaluate:

`int((1 + sinx)/(1 + cosx))e^x dx`


Evaluate:

`inte^x sinx  dx`


The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.


Evaluate `int tan^-1x  dx`


Evaluate:

`int1/(x^2 + 25)dx`


Evaluate `int (1 + x + x^2/(2!))dx`


Evaluate the following. 

`int x sqrt(1 + x^2)  dx`  


The value of `inta^x.e^x dx` equals


Evaluate:

`inte^x "cosec"  x(1 - cot x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×