Advertisements
Advertisements
प्रश्न
`int ("x" + 1/"x")^3 "dx"` = ______
पर्याय
`1/4 ("x" + 1/"x")^4` + c
`"x"^4/4 + "3x"^2/2 + 3 log "x" - 1/"2x"^2 + "c"`
`"x"^4/4 + "3x"^2/2 + 3 log "x" + 1/"x"^2 + "c"`
`("x" - "x"^-1)^3` + c
उत्तर
`int ("x" + 1/"x")^3 "dx"` = `bbunderline("x"^4/4 + "3x"^2/2 + 3 log "x" - 1/"2x"^2 + "c")`
Explanation:
Let I = `int ("x" + 1/"x")^3 "dx"`
`int ("x"^3 + "3x" + 3/"x" + 1/"x"^3)` dx
`= "x"^4/4 + 3 "x"^2/2 + 3 log |"x"| - 1/"2x"^2` + c
APPEARS IN
संबंधित प्रश्न
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
Evaluate the following : `int x tan^-1 x .dx`
Evaluate the following : `int e^(2x).cos 3x.dx`
Evaluate the following : `int log(logx)/x.dx`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Evaluate the following.
`int "e"^"x" (1/"x" - 1/"x"^2)`dx
Evaluate the following.
`int "e"^"x" "x - 1"/("x + 1")^3` dx
Choose the correct alternative from the following.
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` =
`int 1/sqrt(x^2 - 8x - 20) "d"x`
`int tan^-1 sqrt(x) "d"x` is equal to ______.
The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx` is
Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`
`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.
Evaluate the following.
`intx^3 e^(x^2)dx`