Advertisements
Advertisements
प्रश्न
Evaluate the following : `int e^(2x).cos 3x.dx`
उत्तर
Let I = `int e^(2x).cos 3x.dx`
I = `int cos 3x.e^(2x) dx`
= `cos 3x inte^(2x) .dx - int [d/dx (cos 3x) - e^(2x).dx]dx`
= `cos3x. (e^(2x))/(2) - int(-sin3x).(3) e^(2x)/2.dx`
= `(1)/(2).cos3xe^(2x) + 3/2 int sin 3x. e^(2x) dx`
= `(1)/(2)cos3xe^(2x) + 3/2[sin3x.int e^(2x)dx - int [(cos3x)3.int e^(2x)dx]dx`
= `(1)/(2)cos3x.e^(2x) + 3/2sin3x.(e^(2x))/2 - 3/2 .3int cos3x.e^(2x)/2dx`
= `(1)/(2)cos3x.e^(2x) + 3/4sin3x.e^(2x) - 9/4 intcos3x.e^(2x)dx`
= `(1)/(2)cos3x.e^(2x) + 3/4sin3x.e^(2x) - 9/4 "I"`
`"I" + 9/4"I" = (1/2 cos3x + 3/4 sin3x)e^(2x)`
`13/4"I" = (1/2 cos3x + 3/4 sin3x)e^(2x)`
I = `4/13 [1/2cos3x + 3/4sin3x]e^(2x)`
I = `1/13 [2cos3x + 3sin3x]e^(2x) + c`
∴ I = `e^(2x)/(13) (2 cos3x + 3 sin 3x) + c`.
APPEARS IN
संबंधित प्रश्न
Integrate : sec3 x w. r. t. x.
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Integrate the function in x sin x.
Integrate the function in x log x.
Integrate the function in x log 2x.
Integrate the function in x2 log x.
Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.
Integrate the function in (x2 + 1) log x.
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
Integrate the function in `((x- 3)e^x)/(x - 1)^3`.
`intx^2 e^(x^3) dx` equals:
Evaluate the following : `int x^2.log x.dx`
Evaluate the following : `int x^3.tan^-1x.dx`
Evaluate the following:
`int sec^3x.dx`
Evaluate the following : `int x.sin^2x.dx`
Evaluate the following : `int cos sqrt(x).dx`
Evaluate the following : `int logx/x.dx`
Integrate the following functions w.r.t. x : `e^(2x).sin3x`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`
Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`
Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`
Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)]
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
Choose the correct options from the given alternatives :
`int (x- sinx)/(1 - cosx)*dx` =
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Integrate the following w.r.t.x : e2x sin x cos x
Integrate the following w.r.t.x : sec4x cosec2x
Evaluate the following.
∫ x log x dx
Evaluate the following.
`int "e"^"x" "x - 1"/("x + 1")^3` dx
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
`int ["cosec"(logx)][1 - cot(logx)] "d"x`
`int ("d"x)/(x - x^2)` = ______
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
`int"e"^(4x - 3) "d"x` = ______ + c
Evaluate `int (2x + 1)/((x + 1)(x - 2)) "d"x`
Evaluate the following:
`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
Evaluate the following:
`int_0^pi x log sin x "d"x`
Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`
Solve: `int sqrt(4x^2 + 5)dx`
`int(logx)^2dx` equals ______.
`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.
`int_0^1 x tan^-1 x dx` = ______.
`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
Find `int e^x ((1 - sinx)/(1 - cosx))dx`.
`int1/sqrt(x^2 - a^2) dx` = ______
`intsqrt(1+x) dx` = ______
Solution of the equation `xdy/dx=y log y` is ______
`int1/(x+sqrt(x)) dx` = ______
The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate:
`inte^x sinx dx`
Evaluate:
`int e^(logcosx)dx`
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`
Evaluate:
`int (sin(x - a))/(sin(x + a))dx`
Complete the following activity:
`int_0^2 dx/(4 + x - x^2) `
= `int_0^2 dx/(-x^2 + square + square)`
= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`
= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`
= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`
Evaluate:
`int1/(x^2 + 25)dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate the following.
`intx^2e^(4x)dx`