मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate the following : ∫e2x.cos3x.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int e^(2x).cos 3x.dx`

बेरीज

उत्तर

Let I = `int e^(2x).cos 3x.dx`

I = `int cos 3x.e^(2x) dx`

= `cos 3x inte^(2x) .dx - int [d/dx (cos 3x) - e^(2x).dx]dx`

= `cos3x. (e^(2x))/(2) - int(-sin3x).(3) e^(2x)/2.dx`

= `(1)/(2).cos3xe^(2x) + 3/2 int sin 3x. e^(2x) dx`

= `(1)/(2)cos3xe^(2x) + 3/2[sin3x.int e^(2x)dx - int [(cos3x)3.int e^(2x)dx]dx`

= `(1)/(2)cos3x.e^(2x) + 3/2sin3x.(e^(2x))/2 - 3/2 .3int cos3x.e^(2x)/2dx`

= `(1)/(2)cos3x.e^(2x) + 3/4sin3x.e^(2x) - 9/4 intcos3x.e^(2x)dx`

= `(1)/(2)cos3x.e^(2x) + 3/4sin3x.e^(2x) - 9/4 "I"`

`"I" + 9/4"I" = (1/2 cos3x + 3/4 sin3x)e^(2x)`

`13/4"I" = (1/2 cos3x + 3/4 sin3x)e^(2x)`

I = `4/13 [1/2cos3x + 3/4sin3x]e^(2x)`

I = `1/13 [2cos3x + 3sin3x]e^(2x) + c`

∴ I = `e^(2x)/(13) (2 cos3x + 3 sin 3x) + c`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Exercise 3.3 [पृष्ठ १३७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Exercise 3.3 | Q 1.10 | पृष्ठ १३७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Integrate : sec3 x w. r. t. x.


If u and v are two functions of x then prove that

`intuvdx=uintvdx-int[du/dxintvdx]dx`

Hence evaluate, `int xe^xdx`


Integrate the function in x sin x.


Integrate the function in x log x.


Integrate the function in x log 2x.


Integrate the function in xlog x.


Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.


Integrate the function in (x2 + 1) log x.


Integrate the function in `e^x (1 + sin x)/(1+cos x)`.


Integrate the function in `((x- 3)e^x)/(x - 1)^3`.


`intx^2 e^(x^3) dx` equals: 


Evaluate the following : `int x^2.log x.dx`


Evaluate the following : `int x^3.tan^-1x.dx`


Evaluate the following:

`int sec^3x.dx`


Evaluate the following : `int x.sin^2x.dx`


Evaluate the following : `int cos sqrt(x).dx`


Evaluate the following : `int logx/x.dx`


Integrate the following functions w.r.t. x : `e^(2x).sin3x`


Integrate the following functions w.r.t. x:

sin (log x)


Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`


Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]e 


Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`


Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`


Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`


Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`


Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)] 


Choose the correct options from the given alternatives :

`int tan(sin^-1 x)*dx` =


Choose the correct options from the given alternatives :

`int (x- sinx)/(1 - cosx)*dx` =


Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`


Integrate the following w.r.t. x: `(1 + log x)^2/x`


Integrate the following w.r.t.x : e2x sin x cos x


Integrate the following w.r.t.x : sec4x cosec2x


Evaluate the following.

∫ x log x dx


Evaluate the following.

`int "e"^"x" "x - 1"/("x + 1")^3` dx


Evaluate the following.

`int [1/(log "x") - 1/(log "x")^2]` dx


`int ["cosec"(logx)][1 - cot(logx)]  "d"x`


`int ("d"x)/(x - x^2)` = ______


Choose the correct alternative:

`int ("d"x)/((x - 8)(x + 7))` =


`int"e"^(4x - 3) "d"x` = ______ + c


Evaluate `int (2x + 1)/((x + 1)(x - 2))  "d"x`


Evaluate the following:

`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`


Evaluate the following:

`int_0^1 x log(1 + 2x)  "d"x`


Evaluate the following:

`int_0^pi x log sin x "d"x`


Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`


Solve: `int sqrt(4x^2 + 5)dx`


`int(logx)^2dx` equals ______.


`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.


`int_0^1 x tan^-1 x  dx` = ______.


`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.


If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.


Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.


Find `int e^x ((1 - sinx)/(1 - cosx))dx`.


`int1/sqrt(x^2 - a^2) dx` = ______


`intsqrt(1+x)  dx` = ______


Solution of the equation `xdy/dx=y log y` is ______


`int1/(x+sqrt(x))  dx` = ______


The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.


Evaluate:

`intcos^-1(sqrt(x))dx`


Evaluate:

`inte^x sinx  dx`


Evaluate:

`int e^(logcosx)dx`


`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.


Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`


Evaluate:

`int (sin(x - a))/(sin(x + a))dx`


Complete the following activity:

`int_0^2 dx/(4 + x - x^2) `

= `int_0^2 dx/(-x^2 + square + square)`

= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`

= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`

= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`


Evaluate:

`int1/(x^2 + 25)dx`


Evaluate the following.

`intx^3 e^(x^2) dx`


Evaluate the following. 

`int x sqrt(1 + x^2)  dx`  


Evaluate the following.

`intx^2e^(4x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×