Advertisements
Advertisements
प्रश्न
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
उत्तर
Let I = `int t^2/(t + 1)^2*dt`
= `int ((t^3 + 1) - 1)/(t + 1)^2*dt`
= `int ((t + 1)(t^2 - t + 1) - 1)/(t + 1)^2*dt`
= `int [(t^2 - t + 1)/(t + 1) - (1)/((t + 1^2))]*dt`
= `int [((t + 1)(t - 2) + 3)/(t + 1) - (1)/((t + 1)^2)]*dt`
= `int[t - 2 + 3/(t + 1) - 1/((t + 1)^2)]*dt`
= `int t*dt - 2 int 1*dt + 3 int (1)/(t + 1)*dt - int (1)/((t + 1)^2)*dt`
= `t^2/(2) - 2t + 3|log|t + 1| - ((t + 1)-1)/((-1)) + c`
= `t^2/(2) - 2t + 3log|t + 1| + 1/(t + 1) + c`.
APPEARS IN
संबंधित प्रश्न
Prove that:
`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`
Integrate the function in x log x.
Integrate the function in x sin-1 x.
Integrate the function in x tan-1 x.
Integrate the function in x cos-1 x.
Integrate the function in (sin-1x)2.
Integrate the function in x (log x)2.
Integrate the function in `(xe^x)/(1+x)^2`.
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
Integrate the function in `e^x (1/x - 1/x^2)`.
Integrate the function in e2x sin x.
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
Evaluate the following : `int x^2 sin 3x dx`
Evaluate the following : `int e^(2x).cos 3x.dx`
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Evaluate the following : `int cos sqrt(x).dx`
Evaluate the following : `int sin θ.log (cos θ).dθ`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Integrate the following w.r.t.x : log (x2 + 1)
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Evaluate the following.
`int "e"^"x" (1/"x" - 1/"x"^2)`dx
Evaluate the following.
`int "e"^"x" "x"/("x + 1")^2` dx
Evaluate the following.
`int "e"^"x" "x - 1"/("x + 1")^3` dx
Evaluate the following.
`int (log "x")/(1 + log "x")^2` dx
Choose the correct alternative from the following.
`int (1 - "x")^(-2) "dx"` =
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx
Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
`int 1/x "d"x` = ______ + c
`int"e"^(4x - 3) "d"x` = ______ + c
`int (x^2 + x - 6)/((x - 2)(x - 1)) "d"x` = x + ______ + c
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
Evaluate `int (2x + 1)/((x + 1)(x - 2)) "d"x`
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.
`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
Evaluate the following:
`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`
Evaluate the following:
`int_0^pi x log sin x "d"x`
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
`int tan^-1 sqrt(x) "d"x` is equal to ______.
Solve: `int sqrt(4x^2 + 5)dx`
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
Find: `int e^(x^2) (x^5 + 2x^3)dx`.
`intsqrt(1+x) dx` = ______
Evaluate the following.
`int x^3 e^(x^2) dx`
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
`int1/(x+sqrt(x)) dx` = ______
`inte^(xloga).e^x dx` is ______
`int logx dx = x(1+logx)+c`
`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4))dx`
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate:
`int1/(x^2 + 25)dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following.
`intx^3/sqrt(1+x^4) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)`dx
The value of `inta^x.e^x dx` equals
Evaluate:
`inte^x "cosec" x(1 - cot x)dx`
Evaluate the following.
`intx^3/(sqrt(1 + x^4))dx`