Advertisements
Advertisements
प्रश्न
Integrate the function in x (log x)2.
उत्तर
Let `I = int x (log x)^2 dx`
`= int (log x)^2 * x dx`
`= (log x)^2 int x dx - int [d/dx (log x)^2 * int x dx] dx`
`= x^2/2 (log x)^2 - int (log x) * x dx + C`
`= x^2/2 (log x)^2 - [ (log x) * x^2/2 - int 1/x * x^2/2 dx]`
`= x^2/2 (log x)^2 - x^2/2 log x + 1/2 int x dx`
`= x^2/2 (log x)^2 - x^2/2 log x + 1/2 int*x^2/2 + C`
`= x^2 (log x)^2 - x^2/2 log x + 1/2 * x^2/2 + C`
APPEARS IN
संबंधित प्रश्न
Integrate the function in x sin-1 x.
Integrate the function in ex (sinx + cosx).
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following : `int x.sin^2x.dx`
Evaluate the following : `int logx/x.dx`
Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`
Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Choose the correct options from the given alternatives :
`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Evaluate: `int "dx"/("9x"^2 - 25)`
`int(x + 1/x)^3 dx` = ______.
`int 1/x "d"x` = ______ + c
`int cot "x".log [log (sin "x")] "dx"` = ____________.
`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.
Find `int_0^1 x(tan^-1x) "d"x`
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.
Find `int e^x ((1 - sinx)/(1 - cosx))dx`.
Find: `int e^(x^2) (x^5 + 2x^3)dx`.
Evaluate :
`int(4x - 6)/(x^2 - 3x + 5)^(3/2) dx`
`int1/(x+sqrt(x)) dx` = ______
`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`
Evaluate `int(1 + x + (x^2)/(2!))dx`
Evaluate:
`int (logx)^2 dx`
Evaluate `int tan^-1x dx`
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
The value of `inta^x.e^x dx` equals
Evaluate the following.
`intx^3 e^(x^2)dx`