मराठी

Integrate the function in x (log x)2. - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the function in x (log x)2.

बेरीज

उत्तर

Let `I = int x (log x)^2 dx`

`= int (log x)^2 * x dx`

`= (log x)^2 int x  dx - int [d/dx (log x)^2 * int x  dx] dx`

`= x^2/2 (log x)^2 - int (log x) * x dx + C`

`= x^2/2 (log x)^2 - [ (log x) * x^2/2 - int 1/x * x^2/2 dx]`

`= x^2/2 (log x)^2 - x^2/2 log x  + 1/2 int x  dx`

`= x^2/2 (log x)^2 - x^2/2 log x + 1/2 int*x^2/2 + C`

`= x^2 (log x)^2 - x^2/2 log x + 1/2 * x^2/2 + C`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.6 [पृष्ठ ३२७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.6 | Q 14 | पृष्ठ ३२७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Integrate the function in x sin-1 x.


Integrate the function in ex (sinx + cosx).


Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.


Evaluate the following : `int x^2tan^-1x.dx`


Evaluate the following : `int x.sin^2x.dx`


Evaluate the following : `int logx/x.dx`


Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`


Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`


Choose the correct options from the given alternatives :

`int (sin^m x)/(cos^(m+2)x)*dx` = 


Choose the correct options from the given alternatives :

`int tan(sin^-1 x)*dx` =


Choose the correct options from the given alternatives :

`int sin (log x)*dx` =


Choose the correct options from the given alternatives :

`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =


Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`


Evaluate the following.

`int "x"^3 "e"^("x"^2)`dx


Evaluate: `int "dx"/("9x"^2 - 25)`


`int(x + 1/x)^3 dx` = ______.


`int 1/x  "d"x` = ______ + c


`int cot "x".log [log (sin "x")] "dx"` = ____________.


`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.


Find `int_0^1 x(tan^-1x)  "d"x`


Evaluate the following:

`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`


Evaluate the following:

`int_0^1 x log(1 + 2x)  "d"x`


Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`


`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.


Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.


Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.


Find `int e^x ((1 - sinx)/(1 - cosx))dx`.


Find: `int e^(x^2) (x^5 + 2x^3)dx`.


Evaluate :

`int(4x - 6)/(x^2 - 3x + 5)^(3/2)  dx`


`int1/(x+sqrt(x))  dx` = ______


`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`


Evaluate `int(1 + x + (x^2)/(2!))dx`


Evaluate:

`int (logx)^2 dx`


Evaluate `int tan^-1x  dx`


If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv  dx - int(d/dx u)(intv  dx)dx`. Hence evaluate: `intx cos x  dx`


The value of `inta^x.e^x dx` equals


Evaluate the following.

`intx^3 e^(x^2)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×