Advertisements
Advertisements
प्रश्न
Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.
उत्तर
Let I = `int (sin^-1x)/(1 - x^2)^(3//2) dx`
Consider t = sin–1 x
`dt/dx = 1/sqrt(1 - x^2)`
∴ I = `int (t.dt)/((1 - x^2))`
= `int (t.dt)/((1 - sin^2t))`
= `int (t.dt)/(cos^2t)`
= `int t . sec^2 t dt`
On integrating by parts
= `t int sec^2t.dt - int {(d(t))/dt int sec^2 t}dt`
= `t tan t - int 1.tan t dt`
= t tan t – log sec t + C
= sin–1x tan [sin–1x] – log sec [sin–1x] + C
APPEARS IN
संबंधित प्रश्न
Integrate the function in x tan-1 x.
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
`intx^2 e^(x^3) dx` equals:
Integrate the following functions w.r.t. x : `e^(2x).sin3x`
Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
Choose the correct alternative from the following.
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` =
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
`int (x^2 + x - 6)/((x - 2)(x - 1)) "d"x` = x + ______ + c
`int 1/sqrt(x^2 - 8x - 20) "d"x`
`int log x * [log ("e"x)]^-2` dx = ?
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
`int tan^-1 sqrt(x) "d"x` is equal to ______.
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
`int(xe^x)/((1+x)^2) dx` = ______
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
Evaluate:
`int e^(ax)*cos(bx + c)dx`
Evaluate `int tan^-1x dx`
Evaluate the following.
`intx^3e^(x^2) dx`
Evaluate:
`inte^x "cosec" x(1 - cot x)dx`