Advertisements
Advertisements
प्रश्न
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
उत्तर
Let `I = sin^-1 ((2x)/ (1 + x^2)) dx`
Put x = tan t
⇒ dx = sec2 t dt
∴ `I = int sin^-1 ((2 tan t)/ (1 + tan^2 t)) sec^2 t dt`
`= int sin^-1 (sin 2t) sec^2 t dt`
`= 2t sec^2 t dt = 2 int sec^2 t dt`
`= 2 {t int sec^2 t dt - int [d/dt(t) * int sec^2 t dt] dt}`
`= 2 [t tant - int 1 * tan t dt]`
= 2 t tan t + 2 log |cos t| + C
`= 2 tan^-1 x*x + 2 log |1/ sqrt (1 + x^2)| + C` `...[∵ cos t = 1/ (sect) = 1/ (sqrt (1 + tan^2 t)) = 1/ (sqrt (1 + x^2))]`
`= 2 x tan^-1 x + 2 log |(1 + x^2)^(1/2)| + C`
`= 2 x tan^-1 x + 2 (- 1/2) log |1 + x^2| + C`
`= 2 x tan^-1 x - log |1 + x^2| + C`
APPEARS IN
संबंधित प्रश्न
`int1/xlogxdx=...............`
(A)log(log x)+ c
(B) 1/2 (logx )2+c
(C) 2log x + c
(D) log x + c
Integrate the function in e2x sin x.
Evaluate the following : `int e^(2x).cos 3x.dx`
Evaluate the following: `int x.sin^-1 x.dx`
Evaluate the following : `int x.cos^3x.dx`
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
Evaluate: `int "dx"/("9x"^2 - 25)`
Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
Evaluate: ∫ (log x)2 dx
`int (sin(x - "a"))/(cos (x + "b")) "d"x`
`int (cos2x)/(sin^2x cos^2x) "d"x`
`int sqrt(tanx) + sqrt(cotx) "d"x`
`int 1/x "d"x` = ______ + c
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
Evaluate `int (2x + 1)/((x + 1)(x - 2)) "d"x`
`int "e"^x x/(x + 1)^2 "d"x`
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
`int(logx)^2dx` equals ______.
If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
Evaluate `int(3x-2)/((x+1)^2(x+3)) dx`
Evaluate:
`int e^(ax)*cos(bx + c)dx`
The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.
Evaluate the following:
`intx^3e^(x^2)dx`
Evaluate the following.
`intx^3/sqrt(1+x^4) dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intx^3/sqrt(1+x^4)`dx
Evaluate the following.
`intx^3/(sqrt(1 + x^4))dx`