मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Choose the correct options from the given alternatives : ∫[sin(logx)+cos(logx)]⋅dx = - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Choose the correct options from the given alternatives :

`int [sin (log x) + cos (log x)]*dx` =

पर्याय

  • x cos (log x) + c

  • sin (log x) + c

  • cos (log x) + c

  • x sin (log x) + c

MCQ

उत्तर

x sin (log x) + c

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Miscellaneous Exercise 3 [पृष्ठ १५०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Miscellaneous Exercise 3 | Q 1.18 | पृष्ठ १५०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Integrate : sec3 x w. r. t. x.


Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`


Integrate the function in x cos-1 x.


Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.


Integrate the function in `(xe^x)/(1+x)^2`.


Integrate the function in `e^x (1/x - 1/x^2)`.


Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.


`int e^x sec x (1 +   tan x) dx` equals:


Evaluate the following : `int x tan^-1 x .dx`


Evaluate the following : `int x^2tan^-1x.dx`


Evaluate the following : `int x^3.tan^-1x.dx`


Evaluate the following : `int x.sin^2x.dx`


Evaluate the following : `int cos sqrt(x).dx`


Evaluate the following:

`int x.sin 2x. cos 5x.dx`


Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`


Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`


Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`


Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`


Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`


Choose the correct options from the given alternatives :

`int tan(sin^-1 x)*dx` =


Choose the correct options from the given alternatives :

`int sin (log x)*dx` =


Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`


Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`


Evaluate the following.

∫ x log x dx


Evaluate the following.

`int "x"^2 "e"^"3x"`dx


Evaluate the following.

`int "e"^"x" "x"/("x + 1")^2` dx


Evaluate the following.

`int "e"^"x" "x - 1"/("x + 1")^3` dx


Choose the correct alternative from the following.

`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` = 


Evaluate: Find the primitive of `1/(1 + "e"^"x")`


Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx


Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx


Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`


Evaluate: ∫ (log x)2 dx


`int 1/(4x + 5x^(-11))  "d"x`


`int (sin(x - "a"))/(cos (x + "b"))  "d"x`


`int 1/sqrt(2x^2 - 5)  "d"x`


`int ["cosec"(logx)][1 - cot(logx)]  "d"x`


`int sqrt(tanx) + sqrt(cotx)  "d"x`


Choose the correct alternative:

`intx^(2)3^(x^3) "d"x` =


`int(x + 1/x)^3 dx` = ______.


`int 1/x  "d"x` = ______ + c


`int"e"^(4x - 3) "d"x` = ______ + c


`int (x^2 + x - 6)/((x - 2)(x - 1))  "d"x` = x + ______ + c


Evaluate `int 1/(x log x)  "d"x`


Evaluate `int 1/(4x^2 - 1)  "d"x`


Evaluate `int (2x + 1)/((x + 1)(x - 2))  "d"x`


`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?


`int cot "x".log [log (sin "x")] "dx"` = ____________.


The value of `int "e"^(5x) (1/x - 1/(5x^2))  "d"x` is ______.


`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.


The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1)  dx` is


`int 1/sqrt(x^2 - a^2)dx` = ______.


`int(logx)^2dx` equals ______.


The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.


If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.


Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.


`int1/sqrt(x^2 - a^2) dx` = ______


Solution of the equation `xdy/dx=y log y` is ______


Evaluate `int(3x-2)/((x+1)^2(x+3))  dx`


`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`


Evaluate:

`inte^x sinx  dx`


Evaluate:

`int e^(logcosx)dx`


Evaluate `int tan^-1x  dx`


Evaluate:

`int (sin(x - a))/(sin(x + a))dx`


If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv  dx - int(d/dx u)(intv  dx)dx`. Hence evaluate: `intx cos x  dx`


Complete the following activity:

`int_0^2 dx/(4 + x - x^2) `

= `int_0^2 dx/(-x^2 + square + square)`

= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`

= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`

= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`


Evaluate:

`int1/(x^2 + 25)dx`


Evaluate the following:

`intx^3e^(x^2)dx` 


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate:

`int x^2 cos x  dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)`dx


Evaluate `int(1 + x + x^2/(2!))dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×