Advertisements
Advertisements
प्रश्न
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
पर्याय
x cos (log x) + c
sin (log x) + c
cos (log x) + c
x sin (log x) + c
उत्तर
x sin (log x) + c
APPEARS IN
संबंधित प्रश्न
Integrate : sec3 x w. r. t. x.
Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`
Integrate the function in x cos-1 x.
Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.
Integrate the function in `(xe^x)/(1+x)^2`.
Integrate the function in `e^x (1/x - 1/x^2)`.
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
`int e^x sec x (1 + tan x) dx` equals:
Evaluate the following : `int x tan^-1 x .dx`
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following : `int x^3.tan^-1x.dx`
Evaluate the following : `int x.sin^2x.dx`
Evaluate the following : `int cos sqrt(x).dx`
Evaluate the following:
`int x.sin 2x. cos 5x.dx`
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`
Evaluate the following.
∫ x log x dx
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
Evaluate the following.
`int "e"^"x" "x"/("x + 1")^2` dx
Evaluate the following.
`int "e"^"x" "x - 1"/("x + 1")^3` dx
Choose the correct alternative from the following.
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` =
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
Evaluate: ∫ (log x)2 dx
`int 1/(4x + 5x^(-11)) "d"x`
`int (sin(x - "a"))/(cos (x + "b")) "d"x`
`int 1/sqrt(2x^2 - 5) "d"x`
`int ["cosec"(logx)][1 - cot(logx)] "d"x`
`int sqrt(tanx) + sqrt(cotx) "d"x`
Choose the correct alternative:
`intx^(2)3^(x^3) "d"x` =
`int(x + 1/x)^3 dx` = ______.
`int 1/x "d"x` = ______ + c
`int"e"^(4x - 3) "d"x` = ______ + c
`int (x^2 + x - 6)/((x - 2)(x - 1)) "d"x` = x + ______ + c
Evaluate `int 1/(x log x) "d"x`
Evaluate `int 1/(4x^2 - 1) "d"x`
Evaluate `int (2x + 1)/((x + 1)(x - 2)) "d"x`
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
`int cot "x".log [log (sin "x")] "dx"` = ____________.
The value of `int "e"^(5x) (1/x - 1/(5x^2)) "d"x` is ______.
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx` is
`int 1/sqrt(x^2 - a^2)dx` = ______.
`int(logx)^2dx` equals ______.
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
`int1/sqrt(x^2 - a^2) dx` = ______
Solution of the equation `xdy/dx=y log y` is ______
Evaluate `int(3x-2)/((x+1)^2(x+3)) dx`
`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`
Evaluate:
`inte^x sinx dx`
Evaluate:
`int e^(logcosx)dx`
Evaluate `int tan^-1x dx`
Evaluate:
`int (sin(x - a))/(sin(x + a))dx`
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Complete the following activity:
`int_0^2 dx/(4 + x - x^2) `
= `int_0^2 dx/(-x^2 + square + square)`
= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`
= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`
= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`
Evaluate:
`int1/(x^2 + 25)dx`
Evaluate the following:
`intx^3e^(x^2)dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate:
`int x^2 cos x dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)`dx
Evaluate `int(1 + x + x^2/(2!))dx`.