Advertisements
Advertisements
प्रश्न
Evaluate the following : `int x.sin^2x.dx`
उत्तर
`int x.sin^2x.dx`
= `int x((1 - cos2x)/2).dx`
= `(1)/(2) int (x - x cos2x).dx`
= `(1)/(2) int x.dx - (1)/(2) int x cos 2x.dx`
= `(1)/(2).x^2/(2) - (1)/(2)[x int cos 2x.dx - int {d/dx (x) int cos 2x.dx}.dx]`
= `x^2/(4) - (1)/(2)[x. (sin2x)/(2) - int 1. (sin2x)/(2).dx]`
= `x^2/(4) - (1)/(2) x. sin2x + (1)/(4) sin 2x.dx`
= `x^2/(4) - (1)/(4) x.sin2x + (1)/(4).((-cos2x))/(2) + c`
= `x^2/(4) - (1)/(4) x.sin2x - (1)/(8) cos 2x + c`
= `(1)/(4) [x^2 - x.sin 2x - (1)/(2) cos 2x] + c`.
APPEARS IN
संबंधित प्रश्न
Integrate the function in x log x.
Integrate the function in x log 2x.
Integrate the function in x cos-1 x.
Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.
Integrate the function in ex (sinx + cosx).
Integrate the function in e2x sin x.
`intx^2 e^(x^3) dx` equals:
Find :
`∫(log x)^2 dx`
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following : `int x^2*cos^-1 x*dx`
Evaluate the following : `int cos sqrt(x).dx`
Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`
Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Choose the correct options from the given alternatives :
`int (1)/(cosx - cos^2x)*dx` =
Choose the correct options from the given alternatives :
`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
Integrate the following with respect to the respective variable : cos 3x cos 2x cos x
Integrate the following w.r.t.x : log (x2 + 1)
Integrate the following w.r.t.x : sec4x cosec2x
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
Evaluate the following.
`int "e"^"x" "x"/("x + 1")^2` dx
Evaluate the following.
`int "e"^"x" "x - 1"/("x + 1")^3` dx
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
`int (sinx)/(1 + sin x) "d"x`
`int 1/(4x + 5x^(-11)) "d"x`
`int ["cosec"(logx)][1 - cot(logx)] "d"x`
`int sqrt(tanx) + sqrt(cotx) "d"x`
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
Evaluate `int 1/(x log x) "d"x`
Evaluate `int (2x + 1)/((x + 1)(x - 2)) "d"x`
`int 1/sqrt(x^2 - 8x - 20) "d"x`
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.
`int log x * [log ("e"x)]^-2` dx = ?
The value of `int "e"^(5x) (1/x - 1/(5x^2)) "d"x` is ______.
Evaluate the following:
`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`
State whether the following statement is true or false.
If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`
Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.
Solve: `int sqrt(4x^2 + 5)dx`
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.
Find: `int e^(x^2) (x^5 + 2x^3)dx`.
`intsqrt(1+x) dx` = ______
Solution of the equation `xdy/dx=y log y` is ______
Evaluate the following.
`int x^3 e^(x^2) dx`
`inte^(xloga).e^x dx` is ______
The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.
`int logx dx = x(1+logx)+c`
`int(xe^x)/((1+x)^2) dx` = ______
Solve the following
`int_0^1 e^(x^2) x^3 dx`
Evaluate:
`int e^(logcosx)dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4) dx`
Evaluate the following.
`intx^3e^(x^2) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate:
`int x^2 cos x dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate `int(1 + x + x^2/(2!))dx`.
Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3) dx`