Advertisements
Advertisements
प्रश्न
Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.
उत्तर
Let `I = int (x cos^-1 x)/sqrt(1-x^2) dx`
Put cos-1 x = t
`- 1/sqrt(1-x^2) dx = dt`
`therefore I = - int t cos t dt`
`= - [t int cos t dt - int (d/dt (t)* int cos t dt) dt]`
`= -t sin t + int sin t dt = -t sint - cos t + C`
`= -t sqrt (1 - cos^2 t) - cos t + C`
`= - cos^-1 x sqrt (1 - x^2) - x + C`
`= -[cos^-1 x* sqrt (1 - x^2) + x] + C`
APPEARS IN
संबंधित प्रश्न
Integrate : sec3 x w. r. t. x.
If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:
(A) 0
(B) π
(C) π/2
(D) π/4
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Integrate the function in x log 2x.
Integrate the function in x sec2 x.
`int e^x sec x (1 + tan x) dx` equals:
Prove that:
`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`
Evaluate the following : `int sin θ.log (cos θ).dθ`
Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Integrate the following functions w.r.t. x:
sin (log x)
Choose the correct options from the given alternatives :
`int (log (3x))/(xlog (9x))*dx` =
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
Integrate the following w.r.t.x : cot–1 (1 – x + x2)
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
Choose the correct alternative from the following.
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` =
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
Evaluate: ∫ (log x)2 dx
`int sin4x cos3x "d"x`
`int(x + 1/x)^3 dx` = ______.
`int (x^2 + x - 6)/((x - 2)(x - 1)) "d"x` = x + ______ + c
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
Evaluate `int (2x + 1)/((x + 1)(x - 2)) "d"x`
Find `int_0^1 x(tan^-1x) "d"x`
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
Evaluate the following:
`int_0^pi x log sin x "d"x`
Find: `int e^x.sin2xdx`
`int(logx)^2dx` equals ______.
`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
`int logx dx = x(1+logx)+c`
Evaluate:
`int (logx)^2 dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate:
`int x^2 cos x dx`