Advertisements
Advertisements
प्रश्न
Integrate the function in x sec2 x.
उत्तर
Let `I = int x sec^2 x dx`
Put `u = x, v = sec^2 x`
`therefore int uv dx = u int v dx - int ((du)/dx int v dx) dx`
`= x int sec^2 x dx - int [(d(x))/dx int sec^2 x dx] dx`
`= x tan x - int 1. tan x dx`
`= x tan x + log abs (cos x) + C`
APPEARS IN
संबंधित प्रश्न
Prove that:
`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Integrate the function in x2 log x.
Integrate the function in x cos-1 x.
`int e^x sec x (1 + tan x) dx` equals:
Find :
`∫(log x)^2 dx`
Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`
Evaluate the following:
`int x.sin 2x. cos 5x.dx`
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
Choose the correct options from the given alternatives :
`int (1)/(cosx - cos^2x)*dx` =
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
Integrate the following with respect to the respective variable : cos 3x cos 2x cos x
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Integrate the following w.r.t.x : e2x sin x cos x
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Choose the correct alternative from the following.
`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5 "dx"` =
Evaluate: ∫ (log x)2 dx
`int log x * [log ("e"x)]^-2` dx = ?
The value of `int "e"^(5x) (1/x - 1/(5x^2)) "d"x` is ______.
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
Evaluate:
`int e^(logcosx)dx`
Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`
Evaluate `int (1 + x + x^2/(2!))dx`
Evaluate:
`int x^2 cos x dx`
The value of `inta^x.e^x dx` equals