Advertisements
Advertisements
प्रश्न
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
उत्तर
Let I = `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
Let `1/((x^2 + 1)(x^2 + 2)) = A/(x^2 + 1) + B/(x^2 + 2)`
⇒ 1 = A(x2 + 2) + B(x2 + 1)
⇒ 1 = (A + B)x2 + (2A + B)
On comparing both sides, we get
A + B = 0 and 2A + B = 0
On solving the above equations, we get
A = 1 and B = –1
∴ I = `int(1/(x^2 + 1) - 1/(x^2 + 2))2xdx`
I = `int (2x)/(x^2 + 1) dx - int (2x)/(x^2 + 2) dx`
I = `log|x^2 + 1| - log|x^2 + 2| + C`
I = `log|(x^2 + 1)/(x^2 + 2)| + C`
APPEARS IN
संबंधित प्रश्न
Prove that:
`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
Evaluate the following: `int x.sin^-1 x.dx`
Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`
Evaluate the following : `int logx/x.dx`
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`
Choose the correct options from the given alternatives :
`int (x- sinx)/(1 - cosx)*dx` =
If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.
Choose the correct options from the given alternatives :
`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx
Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`
Evaluate: `int "dx"/(5 - 16"x"^2)`
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
∫ log x · (log x + 2) dx = ?
Find `int_0^1 x(tan^-1x) "d"x`
`int 1/sqrt(x^2 - 9) dx` = ______.
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.
Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.
Find: `int e^(x^2) (x^5 + 2x^3)dx`.
`int(1-x)^-2 dx` = ______
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
Evaluate the following.
`intx^3e^(x^2) dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
The value of `inta^x.e^x dx` equals