Advertisements
Advertisements
प्रश्न
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
उत्तर
`int x/((x + 2)(x + 3)) dx = bb(int (-2)/(x + 2))dx + int 3/(x + 3) dx`
Explanation:
Let `x/((x + 2)(x + 3)) = A/(x + 2) + B/(x + 3)`
⇒ x = A(x + 3) + B(x + 2)
⇒ x = (A + B)x + (3A + 2B)
On equating coefficients of like terms, we get
A + B = 1 .......(1)
⇒ B = 1 – A
⇒ B = 1 – (– 2) = 3
⇒ B = 3
And 3A + 2B = 0 ......(2)
⇒ 3A + 2(1 – A) = 0
⇒ 3A + 2 – 2A = 0
⇒ A + 2 = 0
⇒ A = – 2
∴ `int x/((x + 2)(x + 3)) dx = int (-2)/(x + 2) dx + int 3/(x + 3) dx`
APPEARS IN
संबंधित प्रश्न
Integrate the function in x log x.
Integrate the function in x tan-1 x.
Integrate the function in x cos-1 x.
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
Evaluate the following: `int x.sin^-1 x.dx`
Evaluate the following : `int log(logx)/x.dx`
Evaluate the following : `int logx/x.dx`
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`
Choose the correct options from the given alternatives :
`int (log (3x))/(xlog (9x))*dx` =
If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
Integrate the following with respect to the respective variable : cos 3x cos 2x cos x
Evaluate the following.
`int "e"^"x" "x - 1"/("x + 1")^3` dx
`int(x + 1/x)^3 dx` = ______.
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
Evaluate `int 1/(x(x - 1)) "d"x`
Evaluate `int 1/(4x^2 - 1) "d"x`
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.
`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
`int1/(x+sqrt(x)) dx` = ______
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`