मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Integrate the following functions w.r.t. x : (1+sinx1+cosx).ex - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`

बेरीज

उत्तर

Let I = `int e^x ((1 + sin x)/(1 + cos x)).dx`

= `int e^x [(1 + 2sin  x/2 cos  x /2)/(2 cos^2  x/2)].dx`

= `int e^x [(1)/(2cos^2  x/2) + (2sin  x/2 cos  x/2)/(2cos^2  x/2)].dx`

= `int e^x[1/2 sec^2  x/2 + tan (x/2)].dx`

Put f(x) = `tan (x/2)`

∴ f'(x) = `d/dx [tan  x/2]`

= `sec^2  x/(2).(1)/(2)`

= `(1)/(2) sec^2  x/(2)`

∴ I = `int e^x [f(x) + f'(x)].dx`

= ex f(x) + c

= `e^x. tan (x/2) + c`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Exercise 3.3 [पृष्ठ १३८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Exercise 3.3 | Q 3.2 | पृष्ठ १३८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:

(A) 0

(B) π

(C) π/2

(D) π/4


Integrate the function in x log 2x.


Integrate the function in (sin-1x)2.


Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.


Integrate the function in tan-1 x.


Integrate the function in `e^x (1 + sin x)/(1+cos x)`.


Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.


`intx^2 e^(x^3) dx` equals: 


Evaluate the following : `int x^2 sin 3x  dx`


Evaluate the following:

`int sec^3x.dx`


Evaluate the following : `int e^(2x).cos 3x.dx`


Evaluate the following : `int log(logx)/x.dx`


Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`


Evaluate the following : `int logx/x.dx`


Evaluate the following : `int cos(root(3)(x)).dx`


Integrate the following functions w.r.t. x:

sin (log x)


Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`


Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`


Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]e 


Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`


Integrate the following functions w.r.t.x:

`e^(5x).[(5x.logx + 1)/x]`


Choose the correct options from the given alternatives :

`int tan(sin^-1 x)*dx` =


Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`


Integrate the following w.r.t.x : log (log x)+(log x)–2 


Evaluate the following.

`int "e"^"x" (1/"x" - 1/"x"^2)`dx


Evaluate the following.

`int "e"^"x" "x - 1"/("x + 1")^3` dx


Evaluate the following.

`int (log "x")/(1 + log "x")^2` dx


Choose the correct alternative from the following.

`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` = 


Choose the correct alternative from the following.

`int (1 - "x")^(-2) "dx"` = 


Evaluate: Find the primitive of `1/(1 + "e"^"x")`


Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx


Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`


`int ("e"^xlog(sin"e"^x))/(tan"e"^x)  "d"x`


Choose the correct alternative:

`int ("d"x)/((x - 8)(x + 7))` =


`int(x + 1/x)^3 dx` = ______.


`int 1/x  "d"x` = ______ + c


`int 1/(x^2 - "a"^2)  "d"x` = ______ + c


`int"e"^(4x - 3) "d"x` = ______ + c


Evaluate `int 1/(x(x - 1))  "d"x`


`int 1/sqrt(x^2 - 8x - 20)  "d"x`


`int cot "x".log [log (sin "x")] "dx"` = ____________.


`int log x * [log ("e"x)]^-2` dx = ?


The value of `int "e"^(5x) (1/x - 1/(5x^2))  "d"x` is ______.


Evaluate the following:

`int_0^1 x log(1 + 2x)  "d"x`


Evaluate the following:

`int_0^pi x log sin x "d"x`


The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x))  dx` is


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


Find: `int e^x.sin2xdx`


Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.


`int(logx)^2dx` equals ______.


The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.


If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.


`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.


`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.


Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.


Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.


Find: `int e^(x^2) (x^5 + 2x^3)dx`.


`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`


Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.

Solution: (x2 + y2) dx - 2xy dy = 0

∴ `dy/dx=(x^2+y^2)/(2xy)`                      ...(1)

Puty = vx

∴ `dy/dx=square`

∴ equation (1) becomes

`x(dv)/dx = square`

∴ `square  dv = dx/x`

On integrating, we get

`int(2v)/(1-v^2) dv =intdx/x`

∴ `-log|1-v^2|=log|x|+c_1`

∴ `log|x| + log|1-v^2|=logc       ...["where" - c_1 = log c]`

∴ x(1 - v2) = c

By putting the value of v, the general solution of the D.E. is `square`= cx


`inte^(xloga).e^x dx` is ______


`int(xe^x)/((1+x)^2)  dx` = ______


Evaluate:

`int((1 + sinx)/(1 + cosx))e^x dx`


Evaluate `int (1 + x + x^2/(2!))dx`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.


Evaluate:

`int x^2 cos x  dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)`dx


The value of `inta^x.e^x dx` equals


Evaluate:

`inte^x "cosec"  x(1 - cot x)dx`


Evaluate the following.

`intx^3 e^(x^2)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×