Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
उत्तर
Let I = `int e^x ((1 + sin x)/(1 + cos x)).dx`
= `int e^x [(1 + 2sin x/2 cos x /2)/(2 cos^2 x/2)].dx`
= `int e^x [(1)/(2cos^2 x/2) + (2sin x/2 cos x/2)/(2cos^2 x/2)].dx`
= `int e^x[1/2 sec^2 x/2 + tan (x/2)].dx`
Put f(x) = `tan (x/2)`
∴ f'(x) = `d/dx [tan x/2]`
= `sec^2 x/(2).(1)/(2)`
= `(1)/(2) sec^2 x/(2)`
∴ I = `int e^x [f(x) + f'(x)].dx`
= ex f(x) + c
= `e^x. tan (x/2) + c`.
APPEARS IN
संबंधित प्रश्न
If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:
(A) 0
(B) π
(C) π/2
(D) π/4
Integrate the function in x log 2x.
Integrate the function in (sin-1x)2.
Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.
Integrate the function in tan-1 x.
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
`intx^2 e^(x^3) dx` equals:
Evaluate the following : `int x^2 sin 3x dx`
Evaluate the following:
`int sec^3x.dx`
Evaluate the following : `int e^(2x).cos 3x.dx`
Evaluate the following : `int log(logx)/x.dx`
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Evaluate the following : `int logx/x.dx`
Evaluate the following : `int cos(root(3)(x)).dx`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
Integrate the following w.r.t.x : log (log x)+(log x)–2
Evaluate the following.
`int "e"^"x" (1/"x" - 1/"x"^2)`dx
Evaluate the following.
`int "e"^"x" "x - 1"/("x + 1")^3` dx
Evaluate the following.
`int (log "x")/(1 + log "x")^2` dx
Choose the correct alternative from the following.
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` =
Choose the correct alternative from the following.
`int (1 - "x")^(-2) "dx"` =
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
`int(x + 1/x)^3 dx` = ______.
`int 1/x "d"x` = ______ + c
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
`int"e"^(4x - 3) "d"x` = ______ + c
Evaluate `int 1/(x(x - 1)) "d"x`
`int 1/sqrt(x^2 - 8x - 20) "d"x`
`int cot "x".log [log (sin "x")] "dx"` = ____________.
`int log x * [log ("e"x)]^-2` dx = ?
The value of `int "e"^(5x) (1/x - 1/(5x^2)) "d"x` is ______.
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
Evaluate the following:
`int_0^pi x log sin x "d"x`
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
If u and v ore differentiable functions of x. then prove that:
`int uv dx = u intv dx - int [(du)/(d) intv dx]dx`
Hence evaluate `intlog x dx`
Find: `int e^x.sin2xdx`
Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.
`int(logx)^2dx` equals ______.
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.
`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.
`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.
Find: `int e^(x^2) (x^5 + 2x^3)dx`.
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.
Solution: (x2 + y2) dx - 2xy dy = 0
∴ `dy/dx=(x^2+y^2)/(2xy)` ...(1)
Puty = vx
∴ `dy/dx=square`
∴ equation (1) becomes
`x(dv)/dx = square`
∴ `square dv = dx/x`
On integrating, we get
`int(2v)/(1-v^2) dv =intdx/x`
∴ `-log|1-v^2|=log|x|+c_1`
∴ `log|x| + log|1-v^2|=logc ...["where" - c_1 = log c]`
∴ x(1 - v2) = c
By putting the value of v, the general solution of the D.E. is `square`= cx
`inte^(xloga).e^x dx` is ______
`int(xe^x)/((1+x)^2) dx` = ______
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
Evaluate `int (1 + x + x^2/(2!))dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.
Evaluate:
`int x^2 cos x dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)`dx
The value of `inta^x.e^x dx` equals
Evaluate:
`inte^x "cosec" x(1 - cot x)dx`
Evaluate the following.
`intx^3 e^(x^2)dx`