Advertisements
Advertisements
प्रश्न
Evaluate the following : `int x^2 sin 3x dx`
उत्तर
Let I = `int x^2 sin 3x dx`
= `x^2 int sin 3x.dx - int [d/dx (x^2) int sin 3x.dx]dx ...[∵ int uv.dx = uintv.dx - int[(du)/(dx) int v.dx]dx]]`
`x^2(-(cos3x)/3) - int2x(-(cos3x)/3).dx`
= `-x^2/3 cos3x + (2)/(3) int x cos 3x dx`
= `-x^2/3 cos3x + (2)/(3)[x int cos 3x dx - int {d/dx (x) int cos 3x .dx} .dx] ...[∵ int uv.dx = uintv.dx - int[(du)/(dx) int v.dx]dx]]`
= `-x^2/3 cos3x + 2/3[(xsin3x)/(3) - int 1. (sin3x)/(3).dx]`
= `-x^2/3 cos3x + (2 x sin 3x)/9 - (2)/(9) int (sin 3x)/3 dx`
= `-x^2/3 cos3x + (2 x sin 3x)/9 - (2)/(9) ((- cos3x)/3) + c`
= `-x^2/3 cos3x + (2 x sin 3x)/9 + (2 cos 3x)/27 + c`
APPEARS IN
संबंधित प्रश्न
Integrate the function in x sin 3x.
Integrate the function in x sin-1 x.
Integrate the function in (sin-1x)2.
Integrate the function in tan-1 x.
Integrate the function in `(xe^x)/(1+x)^2`.
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
Integrate the function in `((x- 3)e^x)/(x - 1)^3`.
Integrate the function in e2x sin x.
`intx^2 e^(x^3) dx` equals:
`int e^x sec x (1 + tan x) dx` equals:
Prove that:
`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`
Evaluate the following : `int x^2.log x.dx`
Evaluate the following : `int x^3.tan^-1x.dx`
Evaluate the following : `int x.sin^2x.dx`
Evaluate the following: `int x.sin^-1 x.dx`
Evaluate the following : `int sin θ.log (cos θ).dθ`
Evaluate the following : `int cos(root(3)(x)).dx`
Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`
Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Choose the correct options from the given alternatives :
`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
Integrate the following w.r.t.x : e2x sin x cos x
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
Evaluate the following.
`int (log "x")/(1 + log "x")^2` dx
`int ("x" + 1/"x")^3 "dx"` = ______
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
Evaluate: `int "dx"/(5 - 16"x"^2)`
Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx
Evaluate: ∫ (log x)2 dx
`int (sin(x - "a"))/(cos (x + "b")) "d"x`
`int (cos2x)/(sin^2x cos^2x) "d"x`
Choose the correct alternative:
`intx^(2)3^(x^3) "d"x` =
`int ("d"x)/(x - x^2)` = ______
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
`int (x^2 + x - 6)/((x - 2)(x - 1)) "d"x` = x + ______ + c
Evaluate `int 1/(x log x) "d"x`
`int 1/sqrt(x^2 - 8x - 20) "d"x`
∫ log x · (log x + 2) dx = ?
The value of `int "e"^(5x) (1/x - 1/(5x^2)) "d"x` is ______.
`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.
Find `int_0^1 x(tan^-1x) "d"x`
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
Evaluate the following:
`int_0^pi x log sin x "d"x`
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
State whether the following statement is true or false.
If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.
Find: `int e^x.sin2xdx`
Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.
If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.
`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
Evaluate :
`int(4x - 6)/(x^2 - 3x + 5)^(3/2) dx`
`int1/sqrt(x^2 - a^2) dx` = ______
Solution of the equation `xdy/dx=y log y` is ______
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.
Solution: (x2 + y2) dx - 2xy dy = 0
∴ `dy/dx=(x^2+y^2)/(2xy)` ...(1)
Puty = vx
∴ `dy/dx=square`
∴ equation (1) becomes
`x(dv)/dx = square`
∴ `square dv = dx/x`
On integrating, we get
`int(2v)/(1-v^2) dv =intdx/x`
∴ `-log|1-v^2|=log|x|+c_1`
∴ `log|x| + log|1-v^2|=logc ...["where" - c_1 = log c]`
∴ x(1 - v2) = c
By putting the value of v, the general solution of the D.E. is `square`= cx
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4))dx`
Solve the following
`int_0^1 e^(x^2) x^3 dx`
Evaluate:
`inte^x sinx dx`
Evaluate:
`int e^(logcosx)dx`
Evaluate:
`int (logx)^2 dx`
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
Evaluate:
`int1/(x^2 + 25)dx`
Evaluate the following.
`intx^3/sqrt(1+x^4) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3) dx`